• 제목/요약/키워드: Bone morphogenetic proteins

검색결과 62건 처리시간 0.024초

돼지의 골기질유도 골형성단백질의 골유도능에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON THE BONE INDUCTION CAPACITY OF THE PORCINE BONE MATRIX-DERIVED BONE MORPHOGENETIC PROTEIN)

  • 박영욱;이종호;김수경
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제19권3호
    • /
    • pp.265-286
    • /
    • 1997
  • Bone morphogenetic proteins(BMPs) are a group of transforming growth factor beta(TGF-${\beta}$)-related factors and multifunctional proteins, especially the only known biologic factors capable of inducing endochondral bone formation at an extraskeletal site. This study was performed to investigate the effect of the partially purified porcine BMP(pBMP) at an ectopic site. PBMP was partially purified from porcine bone matrix and its activity was monitored by an in vivo bioassay. The purification method utilized extraction of the bone-inducing activity with 4M guanidine, followed by chromatography on heparin-Sepharose. Active fractions were assayed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. And the fractions were reconstituted with inactive insoluble collagenous bone matrix from rats, acid soluble type I collagen from rat tail and chondroitin-6-sulfate sodium salt and implanted into the pectroralis muscle pouches of Sprague-Dawley rats. And the carrier complex was implanted on the opposite side as control. The rats were sacrificed at the day of 1st, 3rd, 5th, 7th, 11th, 14th and 21st after implantation and examined histologically, radiologically and biochemically. And alkaline phosphatase activity and calcium content were used as indices of bone formation. The results were as follows ; 1. Active fractions were localized in a zone between 31 and 40 KDa on SDS-PAGE. 2. The implanted 3.0mg of the partially purified pBMP induced cartilage and bone in the muscle tissue of rats through an endochondral ossification process. 3. Inactive insoluble bone matrix, type I collagen and chondroitin-6-sulfate have functioned as carriers for pBMP, but revealed some foreign body reactions. 4. Soft X-ray didn't reveal significant change between the experimental and the control group. 5. The alkaline phosphatase activities in the experimental group of 5th, 7th, 11th, 14th and 21st were increased significantly compared with control (p<0.01) with the peak in the group of 11th day. 6. With time, the calcium content of the experimental group increased. And the calcium contents in the experimental group of 11th, 14th and 21st were increased significantly compared with control (p<0.01).

  • PDF

백서 치주인대세포의 분화에 대한 Bone morphogenetic protein-7의 영향 (Effect of BMP-7 on osteoblastic differentiation of rat periodontal ligament cells)

  • 이호재;김영준;정현주
    • Journal of Periodontal and Implant Science
    • /
    • 제35권3호
    • /
    • pp.747-760
    • /
    • 2005
  • Periodontal therapy has dealt primarily with attempts at arresting progression of disease. however, more recent techniques have focused on regenerating the periodontal ligament having the capacity to regenerate the periodontium. Recombinant human bone morphogenetic protein-7(rhBMP-7) can differentiate the osteoprogenitor cells and induce bone formation. The purpose of this study was to evaluate the effect of BMP-7 on rat periodontal ligament cells differentiation, in vitro. In the control group, cells was cultured with DMEM media. In the experimental groups, cells were cultured with rhBMP-7 in concentration of 10, 25, 50 and 100 ng/ml. Each group was characterized by examining alkaline phosphatase activity at 3 and 5 days of culture and the ability to produce mineralized nodules of rat calvarial cells at 14 days of culture. Synthesis of type I collagen(COL-I), osteocalcin(OCN), and bone sialoprotein(BSP) was evaluated by RT-PCR at 7 days of culture. Activation of Smad proteins and p38 MAP kinase was determined by western blot analysis of the cell lysates. Alkaline phosphatase activity was significantly increased in the concentration of BMP-7 50 ng/ml and 100 ng/ml compared to the control(p<0.05). The mineralized bone nodule formation was greater with addition of 50 ng/ml and 100 ng/ml BMP-7 than the control(p<0.01). In 7 days' culture, the expressions of COL-I, BSP, and OCN was increased by BMP-7 in concentration of 10 $ng/ml{\sim}100$ ng/ml. In western blot analysis, BMP-7 treated culture cells expressed Smad 1,5,8 in dose-dependent manner, whereas BMP-7 did not activate phosphorylated form of p38 MAP kinase. These result suggested that BMP-7 stimulate rat periodontal ligament cells to differentiate toward osteoblast phenotype and increase bone matrix production by activation of BMP-Smad pathway.

백서두개골 결손부에서 BMP전달체의 골재생효과분석 (The Analysis of Bone regenerative effect with carriers of bone morphogenetic protein in rat calvarial defects)

  • 정성원;정지희;채경준;정의원;김창성;조규성;채중규;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제37권4호
    • /
    • pp.733-742
    • /
    • 2007
  • Bone morphogenetic proteins have been shown to possess significant osteoinSductive potential, but in order to take advantage of this effect for tissue engineering, carrier systems are essential. Successful carrier systems must enable vascular and cellular invasion, allowing BMP to act as a differentiation factor. The carrier should be reproducible, non-immunogenic, moldable, and space-providing, to define the contours of the resulting bone. The purpose of this study was to review available literature, in comparing various carriers of BMP on rat calvarial defect model. The following conclusions were deduced. 1. Bone regeneration of ACS/BMP, ${\beta}-TCP/BMP$, FFSS/BMP, $FFSS/{\beta}-TCP/BMP$, MBCP/BMP group were significantly greater than the control groups. 2. Bone density in the ACS/BMP group was greater than that in ${\beta}-TCP$, FFSS, $FFSS/{\beta}-TCP$ carrier group. 3. Bone regeneration in FFSS/BMP group was less than in ACS/BMP, ${\beta}-TCP/BMP$, MBCP/BMP group. However, New bone area of $FFSS/{\beta}-TCP/BMP$ carrier group were more greater than that of FFSS/BMP group. ACS, ${\beta}-TCP$, FFSS, $FFSS/{\beta}-TCP$, MBCP were used for carrier of BMP. However, an ideal carrier which was reproducible, non-immunogenic, moldable, and space-providing did not exist. Therefore, further investigation are required in developing a new carrier system.

젤 전기영동 및 액체 크로마토그래피 분리 방법을 이용하여 지방 세포로부터 분비되는 단백질들에 대한 프로테오믹스 연구 방법 (Intensive Proteomic Approach to Identify Secreted Peptides/Proteins from 3T3-L1 Adipocytes using Gel Electrophoresis and Liquid Chromatograph Separation Methods)

  • 황현호;백문창
    • 약학회지
    • /
    • 제55권3호
    • /
    • pp.203-212
    • /
    • 2011
  • Adipocytes have been known to secrete a number of important proteins called adipokines with roles in energy metabolism, reproduction, cardiovascular function and immunity. In this study we have attempted to identify intensively secretory proteins from 3T3-L1 adipocytes. 3T3-L1 preadipocytes were differentiated into mature adipocytes and then the cells were left in serum-free medium. The supernatant was filtrated and dialyzed. Lyophilized secretome was fractionated by two different methods, 1-D SDS PAGE and RP-FPLC. The tryptic peptides from the gel slices and the FPLC fractions were analyzed by nanoLC/ESI-MS/MS. We identified a total of 303 identical proteins from two methods, 251 proteins from 1-D gel and 184 proteins from RP-FPLC. 86 of them were listed as a secretory protein Finally, we identified many known or unknown secreted proteins existed in the low level including adiponectin, angiotensinogen, bone morphogenetic protein-1 (BMP-1), macrophage migration inhibitory factor (MIF), insulin like growth factor-II (IGF-II), interleukin-6 (IL-6), follistatin-related protein-1, minecan, and resistin. The existence of some of secreted proteins has been confirmed in RNA level. This proteomic experiment is useful for the intensive screening of secretory proteins in many kinds of other cells.

Effect of MBCP block as carrier of rhBMP-2 in combination with ePTFE membrane on bone formation in rat calvarial defects

  • Shin, Chul-Woo;Cho, Kyoo-Sung;Jung, Sung-Won;Kim, Chang-Sung;Choi, Seong-Ho;Yun, Jeong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • 제38권sup2호
    • /
    • pp.325-334
    • /
    • 2008
  • Purpose: The carrier used as delivery agent for bone morphogenetic proteins(BMPs) should also act as a scaffold for new bone formation. Moreover, bone formation should be predictable in terms of the volume and shape. This study examined the osteogenic effect of macroporous biphasic calcium phosphate (MBCP) block combined with ePTFE membrane as a carrier for recombinant human bone morphogenetic proteins (rhBMP-2). In addition, the additive effect of ePTFE membrane on bone formation was evaluated. Materials and Methods: Eight-millimeter critical sized calvarial defects were created surgically in 28 male Sprague-Dawley rats. The animals were divided into 2 groups containing 14 animals each. The defects were treated with either rhBMP-2/MBCP block (rhBMP-2/MBCP group) or rhBMP-2/MBCP block/ePTFE membrane (rhBMP-2/MBCP/ePTFE group). A disc-shaped MBCP block (3 mm height and 8 mm diameter) was used as the carrier for the rhBMP-2 and ePTFE membrane was used to cover the rhBMP-2/MBCP block. The histologic and histometric parameters were used to evaluate the defects after 2- or 8-week healing period (7 animals/group/healing interval). Results: The level of bone formation in the defects of both groups was significantly higher at 8 weeks than that at 2 weeks (P < 0.05). The ePTFE membrane has no additional effect compared with the rhBMP-2/MBCP block only. However, at 8 weeks, rhBMP-2/MBCP/ePTFE group showed more even bone formation on the top of the MBCP block than the rhBMP-2/MBCP group. Conclusion: These results suggest that the ePTFE membrane has no additive effect on bone formation when a MBCP block is used as a carrier for rhBMP-2.

Functional analysis of Bombyx mori Decapentaplegic gene for bone differentiation in a mammalian cell

  • Park, Seung-Won;Goo, Tae-Won;Choi, Gwang-Ho;Kang, Seok-Woo;Kim, Sung-Wan;Kim, Seong-Ryul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제27권1호
    • /
    • pp.159-165
    • /
    • 2013
  • Bone morphogenetic proteins (BMPs) belong to the transforming growth factor (TGF-${\beta}$) superfamily and are involved in osteoblastic differentiation. The largest TGF-${\beta}$ superfamily subgroup shares genetic homology with human BMPs (hBMPs) and silkworm decapentaplegic (dpp). In addition, hBMPs are functionally interchangeable with Drosophila dpp. Bombyx mori dpp may induce bone formation in mammalian cells. To test this hypothesis, we synthesized the 1,285-base pairs cDNA of full-length B. mori dpp using total RNAs obtained from the fat body of 3-day-old of the $5^{th}$ instar larvae and cloned the cDNA into the pCEP4 mammalian expression vector. Next, B. mori dpp was expressed in C3H10T1/2 cells. The target cells transfected with the pCEP4-Bm dpp plasmid showed biological functions similar to those of osteogenic differentiation induction growth factors such as hBMPs. We determined the relative mRNA expression rates of Runt-related transcription factor 2 (RUNX2), osterix, osteocalcin, and alkaline phosphatase (ALP) to validate the osteoblast-specific differentiation effects of B. mori dpp by performing quantitative real-time RT-PCR. Interestingly, mRNA expression levels of the 3 marker genes except RUNX2, in cells expressing B. mori dpp were much higher than those in control cells and C3H10T1/2 cells transfected with pCEP4. These results suggested that B. mori dpp signaling regulates osterix expression during osteogenic differentiation via RUNX2-independent mechanisms.

Bone Morphogenic Protein-2 (BMP-2) Immobilized Biodegradable Scaffolds for Bone Tissue Engineering

  • Kim, Sung-Eun;Rha, Hyung-Kyun;Surendran, Sibin;Han, Chang-Whan;Lee, Sang-Cheon;Choi, Hyung-Woo;Choi, Yong-Woo;Lee, Kweon-Haeng;Rhie, Jong-Won;Ahn, Sang-Tae
    • Macromolecular Research
    • /
    • 제14권5호
    • /
    • pp.565-572
    • /
    • 2006
  • Recombinant human bone morphogenic protein-2 (rhBMP-2), which is known as one of the major local stimuli for osteogenic differentiation, was immobilized on the surface of hyaluronic acid (HA)-modified poly$(\varepsilon-caprolactone)$ (PCL) (HA-PCL) scaffolds to improve the attachment, proliferation, and differentiation of human bone marrow stem cells (hBMSCs) for bone tissue engineering. The rhBMP-2 proteins were directly immobilized onto the HA-modified PCL scaffolds by the chemical grafting the amine groups of proteins to carboxylic acid groups of HA. The amount of covalently bounded rhBMP-2 was measured to 1.6 pg/mg (rhBMP/HA-PCL scaffold) by using a sandwich enzyme-linked immunosorbant assay. The rhBMP-2 immobilized HA-modified-PCL scaffold exhibited the good colonization, by the newly differentiated osteoblasts, with a statistically significant increase of the rhBMP-2 release and alkaline phosphatase activity as compared with the control groups both PCL and HA-PCL scaffolds. We also found enhanced mineralization and elevated osteocalcin detection for the rhBMP-2 immobilized HA-PCL scaffolds, in vitro.

두개봉합부의 초기형태발생과정에서 BMP와 그 수용체의 발현 양상 (THE EXPRESSION PATTERN OF BMPS AND THEIR RECEPTORS IN CALVARIAL SUTURE DEVELOPMENT)

  • 윤양하;이상원;박미현;류현모;남순현;김영진;김현정
    • 대한소아치과학회지
    • /
    • 제29권3호
    • /
    • pp.345-353
    • /
    • 2002
  • Bone morphogenetic proteins(BMPs)는 형태형성 및 세포 분화동안 다양한 조절 역할을 담당하는 신호전달 인자이다. 시상두개봉합부 발생시 BMPs와 그 수용체의 역할을 분석하기 위해, in situ hybridization방법을 이용하여 태생 15일에서 18일 시상두개봉합부에서 그 발현 양상을 분석하였다. BMP-2와 BMP-3은 태생 15일부터 osteogenic front와 두정골에서 발현을 보였으며 태생 16일부터 모낭에서 발현이 시작되었다. BMP-4는 osteogenic front에서 강하게 발현되었으며, 간엽조직 및 두정골에서 약하게 발현되었다. BMP-5는 모낭에서 발현되었다. 이전 연구에서 BMP-6는 비후된 연골세포에서 발현된다고 보고되었으나 본 연구에서는 발현되지 않았다. BMP-7은 태생기에 두정골에서 발현되었다. BMPR-IB는 osteogenic front의 외측 가장자리에서 발현되었으나, BMPR-IA는 발현되지 않았다. 이런 결과를 종합해 볼 때, 두개봉합부 초기 형태발생시 BMP-4는 미분화 간엽세포로부터 골아세포로 commit되는 초기단계에 중요한 역할을 하며, BMP-2와 BMP-3는 전구 골아세포에서 골아세포로의 분화과정에, BMP-7은 좀 더 분화가 진행된 골아세포 및 골의 분화 유지에 중요하며, type I 수용체 중 BMPR-IB가 BMP들의 신호전달에 중요한 역할을 함을 예측 할 수 있다. 결론적으로 BMP 신호전달은 다양한 BMP 리간드들과 그 수용체들에 의해 골아세포 분화 전반에 걸쳐 관여하고 있음을 시사한다.

  • PDF

Gene expression pattern during osteogenic differentiation of human periodontal ligament cells in vitro

  • Choi, Mi-Hye;Noh, Woo-Chang;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • 제41권4호
    • /
    • pp.167-175
    • /
    • 2011
  • Purpose: Periodontal ligament (PDL) cell differentiation into osteoblasts is important in bone formation. Bone formation is a complex biological process and involves several tightly regulated gene expression patterns of bone-related proteins. The expression patterns of bone related proteins are regulated in a temporal manner both in vivo and in vitro. The aim of this study was to observe the gene expression profile in PDL cell proliferation, differentiation, and mineralization in vitro. Methods: PDL cells were grown until confluence, which were then designated as day 0, and nodule formation was induced by the addition of 50 ${\mu}g$/mL ascorbic acid, 10 mM ${\beta}$-glycerophosphate, and 100 nM dexamethasone to the medium. The dishes were stained with Alizarin Red S on days 1, 7, 14, and 21. Real-time polymerase chain reaction was performed for the detection of various genes on days 0, 1, 7, 14, and 21. Results: On day 0 with a confluent monolayer, in the active proliferative stage, c-myc gene expression was observed at its maximal level. On day 7 with a multilayer, alkaline phosphatase, bone morphogenetic protein (BMP)-2, and BMP-4 gene expression had increased and this was followed by maximal expression of osteocalcin on day 14 with the initiation of nodule mineralization. In relationship to apoptosis, c-fos gene expression peaked on day 21 and was characterized by the post-mineralization stage. Here, various genes were regulated in a temporal manner during PDL fibroblast proliferation, extracellular matrix maturation, and mineralization. The gene expression pattern was similar. Conclusions: We can speculate that the gene expression pattern occurs during PDL cell proliferation, differentiation, and mineralization. On the basis of these results, it might be possible to understand the various factors that influence PDL cell proliferation, extracellular matrix maturation, and mineralization with regard to gene expression patterns.

Clinical application of auto-tooth bone graft material

  • Park, Sung-Min;Um, In-Woong;Kim, Young-Kyun;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제38권1호
    • /
    • pp.2-8
    • /
    • 2012
  • Introduction: Auto-tooth bone graft material consists of 55% inorganic hydroxyapatite (HA) and 45% organic substances. Inorganic HA possesses properties of bone in terms of the combining and dissociating of calcium and phosphate. The organic substances include bone morphogenetic protein and proteins which have osteoinduction capacity, as well as the type I collagen identical to that found in alveolar bone. Auto-tooth bone graft material is useful as it supports excellent bone regeneration capacity and minimizes the possibility of foreign body reaction,genetic diseases and disease transmission. Materials and Methods: Implant placement combined with osteoinductive regeneration,preservation of extraction socket, maxillary sinus augmentation, and ridge augmentation using block type,powder type, and block+powder type autobone graft materialwere performed for 250 patients with alveolar bone defect and who visited the Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University from September 2009 to August 2011. Results: Clinical assessment: Among the 250 patients of auto-tooth bone graft, clinical assessment was performed for 133 cases of implant placement. The average initial stabilization of placed implants was 74 implant stability quotient (ISQ). Radiological assessment: The average loss of crestal bone in the mandible as measured 6 months on the average after the application of prosthesis load was 0.29 mm, ranging from 0 mm to 3.0 mm. Histological assessment: In the histological assessment, formation of new bone, densified lamellated bone, trabecular bones, osteoblast, and planting fixtures were investigated. Conclusion: Based on these results, we concluded that auto-tooth bone graft material should be researched further as a good bone graft material with osteoconduction and osteoinduction capacities to replace autogenous bone, which has many limitations.