• Title/Summary/Keyword: Bone marrow-derived osteoblasts

Search Result 20, Processing Time 0.022 seconds

Cell attachment and proliferation of bone marrow-derived osteoblast on zirconia of various surface treatment

  • Pae, Ahran;Lee, Heesu;Noh, Kwantae;Woo, Yi-Hyung
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.2
    • /
    • pp.96-102
    • /
    • 2014
  • PURPOSE. This study was performed to characterize the effects of zirconia coated with calcium phosphate and hydroxyapatite compared to smooth zirconia after bone marrow-derived osteoblast culture. MATERIALS AND METHODS. Bone marrow-derived osteoblasts were cultured on (1) smooth zirconia, (2) zirconia coated with calcium phosphate (CaP), and (3) zirconia coated with hydroxyapatite (HA). The tetrazolium-based colorimetric assay (MTT test) was used for cell proliferation evaluation. Scanning electron microscopy (SEM) and alkaline phosphatase (ALP) activity was measured to evaluate the cellular morphology and differentiation rate. X-ray photoelectron spectroscopy (XPS) was employed for the analysis of surface chemistry. The genetic expression of the osteoblasts and dissolution behavior of the coatings were observed. Assessment of the significance level of the differences between the groups was done with analysis of variance (ANOVA). RESULTS. From the MTT assay, no significant difference between smooth and surface coated zirconia was found (P>.05). From the SEM image, cells on all three groups of discs were sporadically triangular or spread out in shape with formation of filopodia. From the ALP activity assay, the optical density of osteoblasts on smooth zirconia discs was higher than that on surface treated zirconia discs (P>.05). Most of the genes related to cell adhesion showed similar expression level between smooth and surface treated zirconia. The dissolution rate was higher with CaP than HA coating. CONCLUSION. The attachment and growth behavior of bone-marrow-derived osteoblasts cultured on smooth surface coated zirconia showed comparable results. However, the HA coating showed more time-dependent stability compared to the CaP coating.

EFFECT OF PLATELET-RICH PLASMA ON OSTEOGENESIS OF MARROW-DERIVED OSTEOBLASTS IN THE MANDIBLE OF RABBIT: HISTOMORPHOMETRIC ANALYSIS (가토의 골수 세포에서 분화된 골모세포의 골 형성에 혈소판 농축 혈장이 미치는 효과: 조직 형태학적 분석)

  • Park, Young-Ju;Shin, Jin-Eob;Chung, Jae-An;Jeon, Min-Su;Kim, Bo-Gyun;Song, Jun-Ho;Yeon, Byong-Moo;Lim, Sung-Chul;Gang, Tae-In
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.29 no.6
    • /
    • pp.474-484
    • /
    • 2007
  • Purpose: The effect of platelet-rich plasma(PRP) on osteogenesis of marrow-derived osteoblasts on histomorphometric analysis in the mandible of rabbit was assessed. Materials and Method: Bone marrow cells were obtained from iliac bone of rabbits and were cultured in a Dulbecco's Modified Eagle's Medium(DMEM) with Dexamethasone, L-Ascortic acid, ${\beta}$-Glycerophosphate to proliferate and differentiate into osteoblasts for $4{\sim}5$ weeks. The expression of osteogenic mar-kers was detected by reverse transcription-polymerase chain reaction(RT-PCR) and silver nitrate stain. Then we prepared bony defects in the mandible of rabbit, 10.0mm in diameter and 4.0mm deep, by trephine bur. In the control group, the defects were filled with autogenous bone and cultured osteoblasts. In the experimental group, the defects were filled with autogenous bone, cultured osteoblasts and PRP. 2 weeks, 4 weeks, 8 weeks later, each group was evaluated with histological and histomorphometric analyses. Results: In vitro, osteoblasts were identified on RT-PCR and silver nitrate stain. According to histological observation, at 2 weeks well-developed anasto-mosing newly-formed woven bone was observed, at 4 weeks anastomosing newly-formed woven bone having osteoblastic activation was observed, and at 8 weeks thick newly-formed woven bone was observed in both control and experimental groups. According to histomorphometric analysis, there were 1.5% more newly-formed bone volume in experimental group than control group at 2 weeks, 28.4% more at 4 weeks, 4.3% more at 8 weeks. Particularly there were significant differences in bone volume at 4 weeks and 8 weeks new bone. Conclusion: Our results demonstrated PRP may enhance osteogenesis of marrow-derived osteoblasts at 4 weeks, 8 weeks.

Carnosol induces the osteogenic differentiation of bone marrow-derived mesenchymal stem cells via activating BMP-signaling pathway

  • Abdallah, Basem M.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.3
    • /
    • pp.197-206
    • /
    • 2021
  • Carnosol is a phenolic diterpene phytochemical found in rosemary and sage with reported anti-microbial, anti-oxidant, anti-inflammatory, and anti-carcinogenic activities. This study aimed to investigate the effect of carnosol on the lineage commitment of mouse bone marrow-derived mesenchymal stem cells (mBMSCs) into osteoblasts and adipocytes. Interestingly, carnosol stimulated the early commitment of mBMSCs into osteoblasts in dose-dependent manner as demonstrated by increased levels of alkaline phosphatase activity and Alizarin red staining for matrix mineralization. On the other hand, carnosol significantly suppressed adipogenesis of mBMSCs and downregulated both early and late markers of adipogenesis. Carnosol showed to induce osteogenesis in a mechanism mediated by activating BMP signaling pathway and subsequently upregulating the expression of BMPs downstream osteogenic target genes. In this context, treatment of mBMSCs with LDN-193189, BMPR1 selective inhibitor showed to abolish the stimulatory effect of carnosol on BMP2-induced osteogenesis. In conclusion, our data identified carnosol as a novel osteoanabolic phytochemical that can promote the differentiation of mBMSCs into osteoblasts versus adipocytes by activating BMP-signaling.

The Stimulatory Effect of PDE Inhibitors on $PGE_2$-Induced Osteoclastogenesis (PDE 저해제에 의한 $PGE_2$의 파골세포 분화 유도 증강효과)

  • No, A-Long-Sae-Mi;Yim, Mi-Jung
    • YAKHAK HOEJI
    • /
    • v.51 no.4
    • /
    • pp.235-238
    • /
    • 2007
  • To determine the regulatory roles of phosphodiesterase (PDE) inhibitors on $PGE_2$-induced osteoclastogenesis, we investigated the effect of PDE inhibitors on osteoclast formation in the presence of $PGE_2$. Among PDE isozyme specific inhibitors, milrinone, a selective PDE3 inhibitor, and rolipram, a specific PDE4 inhibitor, increased $PGE_2$-induced osteoclast formation in cocultures of mouse bone marrow cells and osteoblasts. To verify that whether the PDE3 and PDE4 inhibitors act indirectly on osteoblasts, we measured the concentration of intracellular cAMP in osteoblasts. Treatment of milrinone or rolipram increased $PGE_2$-stimulated cAMP levels in osteoblasts. Furthermore, northern blot analysis revealed that the PDE3 and PDE4 inhibitors works synergistically with $PGE_2$ to increase the expression of TRANCE mRNA in osteoblasts. On the contrary, the PDE3 and PDE4 inhibitors did not augment the number of osteoclasts differentiated from bone marrow cells by $PGE_2$. In conclusion, the stimulation of $PGE_2$-induced osteoclast formation by the PDE3 and PDE4 inhibitors are attributable to their indirect effect on osteoblasts, not to their direct effect on bone marrow-derived osteoclast precursors.

A STUDY ON THE OSTEOGENIC DIFFERENTIATION OF ADIPOSE-DERIVED ADULT STEM CELL (지방조직 유래 줄기세포의 조골세포로의 분화에 대한 실험적 연구)

  • Lee, Eui-Seok;Jang, Hyon-Seok;Kwon, Jong-Jin;Rim, Jae-Suk
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.2
    • /
    • pp.133-141
    • /
    • 2008
  • Stem cells have self-renewal capacity, long-term viability, and multiline age potential. Adult bone marrow contains mesenchymal stem cells. Bone marrow-derived mesenchymal stem cells (BMSCs) are progenitors of skeletal tissue components and can differentiate into adipocytes, chondrocytes, osteoblasts, and myoblasts in vitro and undergo differentiation in vivo. However, the clinical use of BMSCs has presented problems, including pain, morbidity, and low cell number upon harvest. Recent studies have identified a putative stem cell population within the adipose tissue. Human adipose tissue contains pluripotent stem cells simillar to bone marrow-derived stem cells that can differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. Human adipose tissue-derived stem cells (ATSCs) could be proposed as an alternative source of adult bone marrow stem cells, and could be obtained in large quantities, under local anesthesia, with minimal discomfort. Human adipose tissue obtained by liposuction was processed to obtain ATSCs. In this study, we compared the osteogenic differentiation of ATSCs in a specific osteogenic induction medium with that in a non-osteogenic medium. ATSCs were incubated in an osteogenic medium for 28 days to induce osteogenesis respectively. Osteogenic differentiation was assessed by von Kossa and alkaline phosphatase staining. Expression of osteocyte specific bone sialoprotein, osteocalcin, collagen type I and alkaline phosphatase, bone morphogenic protein 2, bone morphogenic protein 6 was confirmed by RT-PCR. ATSCs incubated in the osteogenic medium were stained positively for von Kossa and alkaline phosphatase staining. Expression of osteocyte specific genes was also detected. Since this cell population can be easily identified through fluorescence microscopy, it may be an ideal source of ATSCs for further experiments on stem cell biology and tissue engineering. The present results show that ADSCs have an ability to differentiate into osteoblasts. In the present study, we extend this approach to characterize adipose tissue-derived stem cells.

The Effect of PDE4 Inhibitor on LPS-Induced Osteoclastogenesis (LPS의 파골세포 분화 유도에 미치는 PDE4 저해제의 증강효과)

  • No, A-Long-Sae-Mi;Chen, Ling;Yim, Mi-Jung
    • YAKHAK HOEJI
    • /
    • v.52 no.1
    • /
    • pp.43-47
    • /
    • 2008
  • To determine the regulatory roles of PDE4 inhibitor on LPS-induced osteoclastogenesis, we investigated the effect of a PDE4 inhibitor on osteoclast formation in the presence of LPS. A specific PDE4 inhibitor, rolipram, increased LPS-induced osteoclast formation in cocultures. To verify that whether rolipram acts indirectly on osteoblasts, we investigated the TRANCE and COX-2 mRNA expression levels in osteoblasts. Treatment of rolipram increased the expression of TRANCE and COX-2 mRNA in osteoblasts stimulated by LPS. On the contrary, rolipram did not augment the number of osteoclasts differentiated from bone marrow cells by LPS. In conclusion, the stimulation of LPS-induced osteoclast formation by the PDE4 inhibitor are attributable to its indirect effect on osteoblasts, not to their direct effect on bone marrow-derived osteoclast precursors.

Dissection of Cellular Communication between Human Primary Osteoblasts and Bone Marrow Mesenchymal Stem Cells in Osteoarthritis at Single-Cell Resolution

  • Ying Liu;Yan Chen;Xiao-Hua Li;Chong Cao;Hui-Xi Zhang;Cui Zhou;Yu Chen;Yun Gong;Jun-Xiao Yang;Liang Cheng;Xiang-Ding Chen;Hui Shen;Hong-Mei Xiao;Li-Jun Tan;Hong-Wen Deng
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.342-355
    • /
    • 2023
  • Background and Objectives: Osteoblasts are derived from bone marrow mesenchymal stem cells (BMMSCs) and play important role in bone remodeling. While our previous studies have investigated the cell subtypes and heterogeneity in osteoblasts and BMMSCs separately, cell-to-cell communications between osteoblasts and BMMSCs in vivo in humans have not been characterized. The aim of this study was to investigate the cellular communication between human primary osteoblasts and bone marrow mesenchymal stem cells. Methods and Results: To investigate the cell-to-cell communications between osteoblasts and BMMSCs and identify new cell subtypes, we performed a systematic integration analysis with our single-cell RNA sequencing (scRNA-seq) transcriptomes data from BMMSCs and osteoblasts. We successfully identified a novel preosteoblasts subtype which highly expressed ATF3, CCL2, CXCL2 and IRF1. Biological functional annotations of the transcriptomes suggested that the novel preosteoblasts subtype may inhibit osteoblasts differentiation, maintain cells to a less differentiated status and recruit osteoclasts. Ligand-receptor interaction analysis showed strong interaction between mature osteoblasts and BMMSCs. Meanwhile, we found FZD1 was highly expressed in BMMSCs of osteogenic differentiation direction. WIF1 and SFRP4, which were highly expressed in mature osteoblasts were reported to inhibit osteogenic differentiation. We speculated that WIF1 and sFRP4 expressed in mature osteoblasts inhibited the binding of FZD1 to Wnt ligand in BMMSCs, thereby further inhibiting osteogenic differentiation of BMMSCs. Conclusions: Our study provided a more systematic and comprehensive understanding of the heterogeneity of osteogenic cells. At the single cell level, this study provided insights into the cell-to-cell communications between BMMSCs and osteoblasts and mature osteoblasts may mediate negative feedback regulation of osteogenesis process.

The Effect of Bone Marrow-Derived Osteoblasts on Mandibular Deffect in Rabbit (가토골수에서 유래된 골모세포의 하악골 결손부 이식시 골형성에 미치는 효과)

  • Park, Young-Ju;Nam, Jeong-Hun;Kim, Bo-Gyun;Jeon, Min-Su;Chung, Jae-An;Lee, Jung-Won;Ahn, Jang-Hoon;Gang, Tae-In;Park, Mi-Hee;Lim, Sung-Chul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.4
    • /
    • pp.306-312
    • /
    • 2010
  • Purpose: The purpose of this experiment was to evaluate the clinical effect of cultured autoglogous osteoblasts as a way to treat the defect of mandible in rabbits. Materials and Methods: Twelve rabbits were used to determine the rate of osteogenesis. The osteoblasts were obtained from the iliac crest of rabbits using aspiration. They were then cultured in Dulbecco's Modified Eagles's Medium (DMEM) with beta-glycerophosophatate, L-ascorbicacid, and dexamethasone to proliferate and differentiate osteoprogenitor cells. The expression of osteogenic markers were detected by reverse transcription-polymerase chain reaction (RT-PCR) and silver nitrate staining techniques. Five, 10-mm holes were placed in each rabbit mandible to simulate defective regions with the use of a low speed trephine bur. In the experimental group, the previously cited defects were grafted with both activated osteoblastic and autogenous bone. The control group, however, was only grafted with autogenous bone. Both groups were then analyzed at 2, 4, and 8-week intervals using bone histomorphometric analysis. Results: According to histomorphologic analysis, the rates of new bone formation at the 2, 4, and 8-week intervals were 36%, 51%, and 23% for the control group, respectively; 52%, 39%, and 28%, for the experimental group, respectively. The experimental group showed higher rates of new bone formation compared to the control group at both the 2-week and 8-week interval. Conclusion: Bone marrow-derived osteoblasts seems to be a promising bone graft material.

Osteogenic Potency of Nacre on Human Mesenchymal Stem Cells

  • Green, David W.;Kwon, Hyuk-Jae;Jung, Han-Sung
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.267-272
    • /
    • 2015
  • Nacre seashell is a natural osteoinductive biomaterial with strong effects on osteoprogenitors, osteoblasts, and osteoclasts during bone tissue formation and morphogenesis. Although nacre has shown, in one study, to induce bridging of new bone across large non-union bone defects in 8 individual human patients, there have been no succeeding human surgical studies to confirm this outstanding potency. But the molecular mechanisms associated with nacre osteoinduction and the influence on bone marrow-derived mesenchymal stem cells (BMSC's), skeletal stem cells or bone marrow stromal cells remain elusive. In this study we highlight the phenotypic and biochemical effects of Pinctada maxima nacre chips and the global nacre soluble protein matrix (SPM) on primary human bone marrow-derived stromal cells (hBMSCs) in vitro. In static co-culture with nacre chips, the hBMSCs secreted Alkaline phosphatase (ALP) at levels that exceeded bone morphogenetic protein (rhBMP-2) treatment. Concentrated preparation of SPM applied to Stro-1 selected hBMSC's led to rapid ALP secretions, at concentrations exceeding the untreated controls even in osteogenic conditions. Within 21 days the same population of Stro-1 selected hBMSCs proliferated and secreted collagens I-IV, indicating the premature onset of an osteoblast phenotype. The same SPM was found to promote unselected hBMSC differentiation with osteocalcin detected at 7 days, and proliferation increased at 7 days in a dose-dependent manner. In conclusion, nacre particles and nacre SPM induced the early stages of human bone cell differentiation, indicating that they may be promising soluble factors with osteoinductive capacity in primary human bone cell progenitors such as, hBMSC's.

Mouse Strain-Dependent Osteoclastogenesis in Response to Lipopolysaccharide

  • Choi, Ho-Gil;Kim, Jin-Moon;Kim, Bong-Ju;Yoo, Yun-Jung;Cha, Jeong-Heon
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.566-571
    • /
    • 2007
  • Bacterial lipopolysaccharide (LPS) is a potent stimulator of bone resorption in periodontitis. Co-culture systems of mouse calvaria-derived osteoblasts and bone marrow-derived preosteoclasts were used as an in vitro osteoclast differentiation. This study revealed that co-cultures using ddY or ICR mouse strain responded differently to LPS while responded equally to $1{\alpha},25(OH)_2D_3$. Thus, the different response to LPS indicates dissimilarity of two mouse stains in their capacity for generating osteoclasts while the two mouse strains share the similarity in response to $1{\alpha},25(OH)_2D_3$. To identify which cells between osteoblasts and preosteoclasts in the co-culture are responsible for the dissimilarity, the reciprocal co-cultures were performed between ddY and ICR mouse strains. The treatment of $1,25(OH)_2D_3$ to ddY/ICR (osteoblasts from ddY/preosteoclasts from ICR) and ICR/ddY reciprocal co-cultures also showed the similarity. In case of LPS treatment, the results of ddY/ICR were similar to ddY/ddY and the results of the other reciprocal co-culture, ICR/ddY combination, were consistent with those of ICR/ICR. It suggests that the dissimilarity between the two mouse strains may resident in osteoblasts but not in preosteoclasts. Therefore, the osteoblast is responsible for mouse strain-dependent osteoclastogenesis in response to LPS. Although mouse models will continue to provide insights into molecular mechanisms of osteoclastogenesis, caution should be exercised when using different mouse strains, especially ddY and ICR strains as models for osteoclast differentiation.