Browse > Article

Mouse Strain-Dependent Osteoclastogenesis in Response to Lipopolysaccharide  

Choi, Ho-Gil (Department of Oral Biology, BK21 project, Oral Science Research Center, Yonsei University College of Dentistry)
Kim, Jin-Moon (Department of Oral Biology, BK21 project, Oral Science Research Center, Yonsei University College of Dentistry)
Kim, Bong-Ju (Department of Oral Biology, BK21 project, Oral Science Research Center, Yonsei University College of Dentistry)
Yoo, Yun-Jung (Department of Oral Biology, BK21 project, Oral Science Research Center, Yonsei University College of Dentistry)
Cha, Jeong-Heon (Department of Oral Biology, BK21 project, Oral Science Research Center, Yonsei University College of Dentistry)
Publication Information
Journal of Microbiology / v.45, no.6, 2007 , pp. 566-571 More about this Journal
Abstract
Bacterial lipopolysaccharide (LPS) is a potent stimulator of bone resorption in periodontitis. Co-culture systems of mouse calvaria-derived osteoblasts and bone marrow-derived preosteoclasts were used as an in vitro osteoclast differentiation. This study revealed that co-cultures using ddY or ICR mouse strain responded differently to LPS while responded equally to $1{\alpha},25(OH)_2D_3$. Thus, the different response to LPS indicates dissimilarity of two mouse stains in their capacity for generating osteoclasts while the two mouse strains share the similarity in response to $1{\alpha},25(OH)_2D_3$. To identify which cells between osteoblasts and preosteoclasts in the co-culture are responsible for the dissimilarity, the reciprocal co-cultures were performed between ddY and ICR mouse strains. The treatment of $1,25(OH)_2D_3$ to ddY/ICR (osteoblasts from ddY/preosteoclasts from ICR) and ICR/ddY reciprocal co-cultures also showed the similarity. In case of LPS treatment, the results of ddY/ICR were similar to ddY/ddY and the results of the other reciprocal co-culture, ICR/ddY combination, were consistent with those of ICR/ICR. It suggests that the dissimilarity between the two mouse strains may resident in osteoblasts but not in preosteoclasts. Therefore, the osteoblast is responsible for mouse strain-dependent osteoclastogenesis in response to LPS. Although mouse models will continue to provide insights into molecular mechanisms of osteoclastogenesis, caution should be exercised when using different mouse strains, especially ddY and ICR strains as models for osteoclast differentiation.
Keywords
osteoclast; osteoblast; LPS; osteoclastogenesis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Chen, L.L. and J. Yan. 2001. Porphyromonas gingivalis lipopolysaccharide activated bone resorption of osteoclasts by inducing IL-1, TNF, and PGE. Acta. Pharmacol. Sin. 22, 614-618   PUBMED
2 Hofbauer, L.C., S. Khosla, C.R. Dunstan, D.L. Lacey, W.J. Boyle, and B.L. Riggs. 2000. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J. Bone Miner. Res. 15, 2-12   DOI   ScienceOn
3 Rogers, J.E., F. Li, D.D. Coatney, C. Rossa, P. Bronson, J.M. Krieder, W.V. Giannobile, and K.L. Kirkwood. 2007. Actinobacillus actinomycetemcomitans lipopolysaccharide-mediated experimental bone loss model for aggressive periodontitis. J. Periodontol. 78, 550-558   DOI   ScienceOn
4 Zhuang, L., J.Y. Jung, E.W. Wang, P. Houlihan, L. Ramos, M. Pashia, and R.A. Chole. 2007. Pseudomonas aeruginosa lipopolysaccharide induces osteoclastogenesis through a toll-like receptor 4 mediated pathway in vitro and in vivo. Laryngoscope 117, 841-847   DOI   ScienceOn
5 Walsh, M.C. and Y. Choi. 2003. Biology of the trance axis. Cytokine Growth Factor Rev. 14, 251-263   DOI   ScienceOn
6 Hsu, H., D.L. Lacey, C.R. Dunstan, I. Solovyev, A. Colombero, E. Timms, H.L. Tan, G. Elliott, M.J. Kelley, I. Sarosi, L. Wang, X.Z. Xia, R. Elliott, L. Chiu, T. Black, S. Scully, C. Capparelli, S. Morony, G. Shimamoto, M.B. Bass, and W.J. Boyle. 1999. Tumor necrosis factor receptor family member rank mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl. Acad. Sci. USA 96, 3540-3545
7 Cheng, J., B. Liu, D.A. Bastin, W. Han, L. Wang, and L. Feng. 2007. Genetic characterization of the Escherichia coli O66 antigen and functional identification of its wzy gene. J. Microbiol. 45, 69-74   과학기술학회마을
8 Kikuchi, T., T. Matsuguchi, N. Tsuboi, A. Mitani, S. Tanaka, M. Matsuoka, G. Yamamoto, T. Hishikawa, T. Noguchi, and Y. Yoshikai. 2001. Gene expression of osteoclast differentiation factor is induced by lipopolysaccharide in mouse osteoblasts via toll-like receptors. J. Immunol. 166, 3574-3579   DOI   PUBMED
9 Kang, K.H., J.A. Song, D.J. Shin, H.E. Choy, and Y. Hong. 2007. Identification of genes differentially expressed in Raw264.7 cells infected by Salmonella typhimurium using PCR method. J. Microbiol. 45, 29-33   과학기술학회마을
10 Takahashi, N., T. Akatsu, N. Udagawa, T. Sasaki, A. Yamaguchi, J.M. Moseley, T.J. Martin, and T. Suda. 1988. Osteoblastic cells are involved in osteoclast formation. Endocrinology 123, 2600-2602   DOI   ScienceOn
11 Takahashi, N., N. Udagawa, and T. Suda. 1999. A new member of tumor necrosis factor ligand family, ODF/OPGl/TRANCE/ RANKL, regulates osteoclast differentiation and function. Biochem. Biophys. Res. Commun. 256, 449-455   DOI   ScienceOn
12 Miyata, Y., H. Takeda, S. Kitano, and S. Hanazawa. 1997. Porphyromonas gingivalis lipopolysaccharide-stimulated bone resorption via CD14 is inhibited by broad-spectrum antibiotics. Infect. immun. 65, 3513-3519   PUBMED
13 Sakuma, Y., K. Tanaka, M. Suda, Y. Komatsu, A. Yasoda, M. Miura, A. Ozasa, S. Narumiya, Y. Sugimoto, A. Ichikawa, F. Ushikubi, and K. Nakao. 2000a. Impaired bone resorption by lipopolysaccharide in vivo in mice deficient in the prostaglandin E receptor EP4 subtype. Infect. Immun. 68, 6819-6825   DOI
14 Li, J., I. Sarosi, X.Q. Yan, S. Morony, C. Capparelli, H.L. Tan, S. McCabe, R. Elliott, S. Scully, G. Van, S. Kaufman, S.C. Juan, Y. Sun, J. Tarpley, L. Martin, K. Christensen, J. McCabe, P. Kostenuik, H. Hsu, F. Fletcher, C.R. Dunstan, D.L. Lacey, and W.J. Boyle. 2000. Rank is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. USA 97, 1566-1571
15 Sismey-Durrant, H.J. and R.M. Hopps. 1987. The effect of lipopolysaccharide from the oral bacterium Bacteroides gingivalis on osteoclastic resorption of sperm-whale dentine slices in vitro. Arch. Oral Biol. 32, 911-913   DOI   ScienceOn
16 Chung, Y.H., E.J. Chang, S.J. Kim, H.H. Kim, H.M. Kim, S.B. Lee, and J.S. Ko. 2006. Lipopolysaccharide from Prevotella nigrescens stimulates osteoclastogenesis in cocultures of bone marrow mononuclear cells and primary osteoblasts. J. Periodontal. Res. 41, 288-296   DOI   ScienceOn
17 Hofbauer, L.C., D.L. Lacey, C.R. Dunstan, T.C. Spelsberg, B.L. Riggs, and S. Khosla. 1999. Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 25, 255-259   DOI   ScienceOn
18 Yasuda, H., N. Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki, S. Mochizuki, A. Tomoyasu, K. Yano, M. Goto, A. Murakami, E. Tsuda, T. Morinaga, K. Higashio, N. Udagawa, N. Takahashi, and T. Suda. 1998. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95, 3597-3602
19 Chiang, C.Y., E. Fu, E.C. Shen, and H.C. Chiu. 2003. Effects of CD14 receptors on tissue reactions induced by local injection of two Gram-negative bacterial lipopolysaccharides. J. Periodontal. Res. 38, 36-43   DOI   ScienceOn
20 Schwartz, Z., J. Goultschin, D.D. Dean, and B.D. Boyan. 1997. Mechanisms of alveolar bone destruction in periodontitis. Periodontol. 2000 14, 158-172   DOI   ScienceOn
21 Suda, K., N. Udagawa, N. Sato, M. Takami, K. Itoh, J.T. Woo, N. Takahashi, and K. Nagai. 2004. Suppression of osteoprotegerin expression by prostaglandin E2 is crucially involved in lipopolysaccharide- induced osteoclast formation. J. Immunol. 172, 2504-2510   DOI   PUBMED
22 Sakuma, Y., K. Tanaka, M. Suda, A. Yasoda, K. Natsui, I. Tanaka, F. Ushikubi, S. Narumiya, E. Segi, Y. Sugimoto, A. Ichikawa, and K. Nakao. 2000b. Crucial involvement of the EP4 subtype of prostaglandin E receptor in osteoclast formation by proinflammatory cytokines and lipopolysaccharide. J. Bone Miner. Res. 15, 218-227   DOI
23 Suda, T., N. Takahashi, and T.J. Martin. 1992. Modulation of osteoclast differentiation. Endocr. Rev. 13, 66-80   PUBMED