• Title/Summary/Keyword: Bone marrow macrophage

Search Result 106, Processing Time 0.026 seconds

Osteoclast Differentiation Factor Engages the PI 3-kinase, p38, and ERK pathways for Avian Osteoclast Differentiation

  • Kim, Hong-Hee;Kim, Hyun-Man;Kwack, Kyu-Bum;Kim, Si-Wouk;Lee, Zang-Hee
    • BMB Reports
    • /
    • v.34 no.5
    • /
    • pp.421-427
    • /
    • 2001
  • Osteoclasts, cells primarily involved in bone resorption, originate from the hematopoietic precursor cells of the monocyte/macrophage lineage and differentiate into multinucleated mature forms. We developed an in vitro osteoclast culture system using embryonic chicken bone marrow cells. This culture system can be utilized in studies on the differentiation and function of osteoclasts. Phosphatidylinositol 3-kinase (PI3-kinase) and mitogen-activated protein kinases (MAPKs) have been implicated in diverse cellular functions including proliferation, migration, and survival. Using the developed avian osteoclast culture system, we examined the involvement of these kinases in osteoclast differentiation by employing specific inhibitors of the kinases. We Found that the inhibition of the PI 3-kinase, p38, or ERK interfered with osteoclast formation, suggesting that the signaling pathways that involve these molecules participate in the process of chicken osteoclast differentiation.

  • PDF

Studies on Kagamboatang(KGBT) on the Hematopoiesis and Proliferation of Immune Function in Mice (가감보아탕(加減補兒湯)의 조혈(造血) 및 면역증진(免疫增進)에 관한 연구(硏究))

  • Kim Yun-Hee;Yoo Dong-Youl
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.14 no.1
    • /
    • pp.79-116
    • /
    • 2000
  • The KGBT has been used to weak children with anorexia, fatigue, and growth retardation. This study was carried out to prove the effects of the hematopoiesis and the immune proliferation by KGBT. Previously, C57BL/6 mice was treated with cyclophosphamide(100mg/kg) for leukopenia, and then administered KGBT (concentration is 1.37 g/kg, 504 mg/kg, and 137 mg/kg) to the treated mice. The mice was analyzed expression of thrombopoietin(TPO), stem cell factor(SCF) and interleukin-3 from bone marrow cell, interleukin-10 (IL-10), and interferon-$ {\gamma}$(INF-${\gamma}$) from splenic cell, and NOSⅡ gene from macrophage using by RT-PCR. Also proliferation of immune cell was analyzed using 3H-thymidine uptake and flow cytometery in splenic cells. The results were obtained as follows ; 1. The total number of WBC, RBC and PLT was increased in the KGBT treated group than in the control group. 2. In vitro, the proliferation of splenic cells was increased in normal, control, and KGBT treated group. And Administration of KGBT was reduced the cytotoxicity by CTX. 3. In bone marrow cell, the gene expression of immune regulatory factor that associated with hematopoiesis, such as TPO, SCF, and IL-13 was increased in the KGBT treated group than control. 4 The titer of hemagglutinin and hemolysin was increased in the KGBT treated group than control. 5. In analysis of positive leucocytes from splenic cell of BALB/c mice, the subpopulation percent of CD4+, CD8+,and CD19+ was increased in the KGBT treated group than control. The KGBT has been used to weak children with anorexia, fatigue, and growth retardation. This study was carried out to prove the effects of the hematopoiesis and the immune proliferation by KGBT. Previously, C57BL/6 mice was treated with cyclophosphamide(100mg/kg) for leukopenia, and then administered KGBT (concentration is 1.37 g/kg, 504 mg/kg, and 137 mg/kg) to the treated mice. The mice was analyzed expression of thrombopoietin(TPO), stem cell factor(SCF) and interleukin-3 from bone marrow cell, interleukin-10 (IL-10), and interferon-$ {\gamma}$(INF-${\gamma}$) from splenic cell, and NOSⅡ gene from macrophage using by RT-PCR. Also proliferation of immune cell was analyzed using 3H-thymidine uptake and flow cytometery in splenic cells. The results were obtained as follows ; 1. The total number of WBC, RBC and PLT was increased in the KGBT treated group than in the control group. 2. In vitro, the proliferation of splenic cells was increased in normal, control, and KGBT treated group. And Administration of KGBT was reduced the cytotoxicity by CTX. 3. In bone marrow cell, the gene expression of immune regulatory factor that associated with hematopoiesis, such as TPO, SCF, and IL-13 was increased in the KGBT treated group than control. 4 The titer of hemagglutinin and hemolysin was increased in the KGBT treated group than control. 5. In analysis of positive leucocytes from splenic cell of BALB/c mice, the subpopulation percent of CD4+, CD8+,and CD19+ was increased in the KGBT treated group than control. 6. The expression of IL-10 gene was reduced in the KGBT treated group than control, whereas the expression of INF-${\gamma}$ was increased in the KGBT treated group. 7. In macrophage, the production of NO and gene expression of NOSH was increased in the KGBT treated group than control. 8. After infection of EMC virus, the survival time of infected mice was longer in the KGBT treated group than control.

  • PDF

Effect of Atractylodis Rhizoma Alba on Osteoclast Formation (백출의 파골세포 분화에 미치는 영향)

  • Park, Sung-Tae;Lee, Myeung-Su;Jeon, Byung-Hun;Park, Kie-In;Oh, Jae-Min
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.109-114
    • /
    • 2011
  • Atractylodis Rhizoma Alba is commonly used herbal medicine and it has been known that has immuno-regualtory effects and anti-cancer effects. The inhibition of osteoclastogenesis is essential for the prevention and treatment of osteoporosis. The aim of this study was to evaluate the effects of Atractylodis Rhizoma Alba on osteoclast differentiation in vitro and on resorbing activity of osteoclast. Osteoclast formation was evaluated in bone marrow cells (BMC) in the presence or absence of Atractylodis Rhizoma Alba. The expression of c-fos, tartrate-resistant acid phosphatase (TRAP), OSCAR, DC-STAMP, cathepsin K, MafB and NFATc1 mRNA in osteoclast precursor were assessed by RT-PCR. The levels of TNF receptor-associated factor-6 (TRAF-6), c-fos and NFATc1 protein were assessed by Western blot analysis. Also the correlation with MAPKs and NF-${\kappa}B$ pathways were measured by using Western blot analysis. With bone resorption study, I tried to evaluate the inhibitory effects of Atractylodis Rhizoma Alba on mature osteoclast function. Atractylodis Rhizoma Alba inhibited the RANKL induced osteoclastic differentiation from bone marrow macrophage in a dose dependant manner without cellular toxicity. Gene expression of c-fos and NFATc1 was significantly down regulated with Atractylodis Rhizoma Alba treatment. Atractylodis Rhizoma Alba markedly inhibited the RANKL-induced osteoclastogenesis through suppression of nuclear factor kappa b (NF-${\kappa}B$) pathway, down stream pathway of p38, ERK and JNK pathway. Taken together, I concluded that Atractylodis Rhizoma Alba have beneficial effect on osteoporosis by inhibition of osteoclast differentiation and by inhibition of functioning osteoclast. Thus I expect that Atractylodis Rhizoma Alba could be a treatment option for osteoporosis.

Immunomodulatory Activity of Crude Polysaccharide Separated from Cudrania tricuspidata Leaf (꾸지뽕(Cudrania tricuspidata) 잎으로부터 분리된 다당류 추출물의 면역 활성)

  • Byun, Eui-Baek;Jang, Beom-Su;Sung, Nak-Yun;Byun, Eui-Hong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.8
    • /
    • pp.1099-1106
    • /
    • 2016
  • The objective of this study was to evaluate the immunomodulatory activity of crude polysaccharide separated from Cudrania tricuspidata leaf. C. tricuspidata polysaccharide (CTP) was extracted by ethanol precipitation. Immunomodulation activity was tested in macrophage cells (RAW 264.7 and bone-marrow derived macrophage) and splenocytes. CTP treatment significantly increased cell proliferation up to $250{\mu}g/mL$ in both RAW 264.7 and bone-marrow derived macrophages. In this concentration range (below $250{\mu}g/mL$), nitric oxide and cytokine [tumor necrosis factor $(TNF)-{\alpha}$ and interleukin (IL)-6] production also significantly increased. Similarly, splenocyte proliferation dosedependently increased except for the $1,000{\mu}g/mL$ treated group. Regarding cytokine production activity in splenocytes, CTP treatment significantly increased production of Th 1 type cytokines [interferon $(IFN)-{\gamma}$] production but not Th 2 type cytokines (IL-4). Therefore, the results indicate that CTP may have a potential effect on immunomodulatory activity in various immune cells, and this is useful for development of immune enhancing adjuvant materials as a natural ingredient.

Propofol promotes osteoclastic bone resorption by increasing DC-STAMP expression

  • Kim, Eun-Jung;Kim, Hyung Joon;Baik, Seong Wan;Kim, Kyung-Hoon;Ryu, Sie Jeong;Kim, Cheul-Hong;Shin, Sang-Wook
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.18 no.6
    • /
    • pp.349-359
    • /
    • 2018
  • Background: Propofol is an intravenous anesthetic which has antioxidant effects due to its similarity in molecular structure to ${\alpha}$-tocopherol. It has been reported that ${\alpha}$-tocopherol increases osteoclast fusion and bone resorption. Here, we investigated the effects of propofol on signaling pathways of osteoclastogenic gene expression, as well as osteoclastogenesis and bone resorption using bone marrow-derived macrophages (BMMs). Methods: BMMs were cultured with macrophage colony-stimulating factor (M-CSF) alone or M-CSF plus receptor activator of nuclear factor kappa B ligand (RANKL) in the presence of propofol ($0-50{\mu}M$) for 4 days. Mature osteoclasts were stained for tartrate-resistant acid phosphatase (TRAP) and the numbers of TRAP-positive multinucleated osteoclasts were counted. To examine the resorption activities of osteoclasts, a bone resorption assay was performed. To identify the mechanism of action of propofol on the formation of multinucleated osteoclasts, we focused on dendritic cell-specific transmembrane protein (DC-STAMP), a protein essential for pre-osteoclastic cell fusion. Results: Propofol increased the formation of TRAP-positive multinucleated osteoclasts. In addition, the bone resorption assay revealed that propofol increased the bone resorption area on dentin discs. The mRNA expression of DC-STAMP was upregulated most strongly in the presence of both RANKL and propofol. However, SB203580, a p38 inhibitor, significantly suppressed the propofol/RANKL-induced increase in mRNA expression of DC-STAMP. Conclusion: We have demonstrated that propofol enhances osteoclast differentiation and maturation, and subsequently increases bone resorption. Additionally, we identified the regulatory pathway underlying osteoclast cell-cell fusion, which was enhanced by propofol through p38-mediated DC-STAMP expression.

Inhibitory Effects of Yongbu-tang on Osteoclast Differentiation and Bone Resorption (용부탕의 파골세포 분화 억제와 골 흡수 억제효과)

  • Lee, Jeong Ju;Jo, So Hyun;Park, Min Cheol;Jo, Eun Heui
    • Journal of Acupuncture Research
    • /
    • v.32 no.3
    • /
    • pp.27-40
    • /
    • 2015
  • Objectives : This study was performed to evaluate the effects of water extract of Cervi Parvum Cornu(CPC), Aconiti Lateralis Radix Preparata(ALR), and Yongbu-tang(YBT) on suppression of the receptor activator of nuclear factor kappa-B ligand(RANKL)-induced osteoclast differentiation and bone resorption. Methods : The effects of CPC, ALR, YBT extracts on osteoclast differentiation were determined by culture of bone marrow macrophage(BMM). The mRNA expression levels of the nuclear factor of activated T-cells cytoplasmic 1(NFATc1), c-Fos and tartrate-resistant acid phosphatase(TRAP) in BMMs were analyzed by reverse transcriptase polymerase chain reaction(RT-PCR). Similarly, the protein expression levels of NFATc1, c-Fos, mitogen-activated protein kinase(MAPK)s and ${\beta}$-actin in cell lysates were measured by western blotting. In addition, effects of CPC, ALR and YBT extracts were determined by means of Lipopolysaccharide(LPS)-induced bone-loss with mice. Results : CPC, ALR and YBT extracts showed remarkable inhibition on RANKL-induced osteoclast differentiation without cytotoxicity. CPC and ALR extracts significantly reduced the protein expression level of NFATc1. YBT extract significantly reduced the mRNA expression levels of c-Fos, NFATc1 and the protein expression levels of c-Fos, NFATc1, AKT, p38, c-Jun N-terminal kinase(JNK). Further, YBT extract suppressed degradation of$ I-{\kappa}B$. And ALR extract significantly restored the bone erosion by LPS treatment in mice. Conclusions : YBT extract showed more remarkable inhibition on osteoclast differentiation than CPC and ALR extracts in vitro. ALR extract showed remarkable inhibition on bone resorption in vivo. Thus, YBT extract can be a useful treatment for bone-loss diseases such as osteoporosis.

Effects of Artemisia princeps Extract on Bone Metabolism (애엽 추출물이 골 대사에 미치는 영향)

  • Lee, Seung-Min;Kim, Myung-Gyou;Lee, Seung-Youn;Kang, Tae-Hoon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.3
    • /
    • pp.363-368
    • /
    • 2010
  • Artemisia princeps has been utilized as a traditional medicine for a variety of diseases in Korea. In this study, we investigated the effects of Artemisia princeps extract (APE) on bone metabolism both in vitro using primary mouse bone marrow-derived macrophage and in vivo using ovariectomized rats. APE decreased the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and TRAP activity. Also, APE inhibited bone resorptive activity of differentiated osteoclasts. In ovariectomized rats, APE alleviated the decrease in the trabecular bone mineral density. These results showed that APE might be useful for the prevention of postmenopausal bone loss.

Silibinin Inhibits Osteoclast Differentiation Mediated by TNF Family Members

  • Kim, Jung Ha;Kim, Kabsun;Jin, Hye Mi;Song, Insun;Youn, Bang Ung;Lee, Junwon;Kim, Nacksung
    • Molecules and Cells
    • /
    • v.28 no.3
    • /
    • pp.201-207
    • /
    • 2009
  • Silibinin is a polyphenolic flavonoid compound isolated from milk thistle (Silybum marianum), with known hepatoprotective, anticarcinogenic, and antioxidant effects. Herein, we show that silibinin inhibits receptor activator of $NF-{\kappa}B$ ligand (RANKL)-induced osteoclastogenesis from RAW264.7 cells as well as from bone marrow-derived monocyte/macrophage cells in a dose-dependent manner. Silibinin has no effect on the expression of RANKL or the soluble RANKL decoy receptor osteoprotegerin (OPG) in osteoblasts. However, we demonstrate that silibinin can block the activation of $NF-{\kappa}B$, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein (MAP) kinase, and extracellular signal-regulated kinase (ERK) in osteoclast precursors in response to RANKL. Furthermore, silibinin attenuates the induction of nuclear factor of activated T cells (NFAT) c1 and osteoclast-associated receptor (OSCAR) expression during RANKL-induced osteoclastogenesis. We demonstrate that silibinin can inhibit $TNF-{\alpha}$-induced osteoclastogenesis as well as the expression of NFATc1 and OSCAR. Taken together, our results indicate that silibinin has the potential to inhibit osteoclast formation by attenuating the downstream signaling cascades associated with RANKL and $TNF-{\alpha}$.

Chemical Properties and Assessment of Immunomodulatory Activities of Extracts isolated from Broccoli (브로콜리로부터 분리한 추출물의 In vitro 면역증진 활성평가 및 화학적 특성)

  • Kwak, Bong-Shin;Park, Hye-Ryung;Lee, Sue Jung;Choi, Hyuk-Joon;Shin, Kwang-Soon
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1140-1148
    • /
    • 2017
  • For the purpose of developing new immunomodulatory agents from broccoli, ethanol extract (BCEE), hot water extract (BCHW), and crude polysaccharide (BCCP) were isolated from broccoli, and their immunomodulatory activities and chemical properties were examined. In the in vitro cytotoxicity analysis, BCHW and BCCP did not affect the growth of tumor cells and normal cells. Murine peritoneal macrophages stimulated with BCCP showed higher production of IL-6, IL-12, and $TNF-{\alpha}$ cytokines than those stimulated with BCHW. Also, BCHW and BCCP did not show proliferation of splenic lymphocytes. In the in vitro assay for intestinal immunomodulatory activities, only BCCP enhanced GM-CSF secretion and the bone marrow cell-proliferating activity via cells in Peyer's patches at $1,000{\mu}g/mL$. Also, BCHW mainly contained 33.7% neutral sugars, such as arabinose, glucose, and galactose, and 30.7% uronic acid, and BCCP consisted of 42.6% neutral sugars, including arabinose, galactose, and glucose, and 50.5% uronic acid. The above results lead us to conclude that crude polysaccharide (BCCP) isolated from broccoli causes considerably high cytokine production in peritoneal macrophages and bone marrow cell proliferation, and the polysaccharide extraction process is indispensable for separation of new immunomodulatory agents from broccoli.

A Medium-Chain Fatty Acid, Capric Acid, Inhibits RANKL-Induced Osteoclast Differentiation via the Suppression of NF-κB Signaling and Blocks Cytoskeletal Organization and Survival in Mature Osteoclasts

  • Kim, Hyun-Ju;Yoon, Hye-Jin;Kim, Shin-Yoon;Yoon, Young-Ran
    • Molecules and Cells
    • /
    • v.37 no.8
    • /
    • pp.598-604
    • /
    • 2014
  • Fatty acids, important components of a normal diet, have been reported to play a role in bone metabolism. Osteoclasts are bone-resorbing cells that are responsible for many bone-destructive diseases such as osteoporosis. In this study, we investigated the impact of a medium-chain fatty acid, capric acid, on the osteoclast differentiation, function, and survival induced by receptor activator of NF-${\kappa}B$ ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Capric acid inhibited RANKL-mediated osteoclastogenesis in bone marrow-derived macrophages and suppressed RANKL-induced $I{\kappa}B{\alpha}$ phosphorylation, p65 nuclear translocation, and NF-${\kappa}B$ transcriptional activity. Capric acid further blocked the RANKL-stimulated activation of ERK without affecting JNK or p38. The induction of NFATc1 in response to RANKL was also attenuated by capric acid. In addition, capric acid abrogated M-CSF and RANKL-mediated cytoskeleton reorganization, which is crucial for the efficient bone resorption of osteoclasts. Capric acid also increased apoptosis in mature osteoclasts through the induction of Bim expression and the suppression of ERK activation by M-CSF. Together, our results reveal that capric acid has inhibitory effects on osteoclast development. We therefore suggest that capric acid may have potential therapeutic implications for the treatment of bone resorption-associated disorders.