• Title/Summary/Keyword: Bone biomechanics

Search Result 98, Processing Time 0.025 seconds

Delivery of growth factor-associated genes to mesenchymal stem cells for cartilage and bone tissue regeneration

  • Ahn, Jongchan;Park, Seah;Cha, Byung-Hyun;Kim, Jae Hwan;Park, Hansoo;Joung, Yoon Ki;Han, Inbo;Lee, Soo-Hong
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.3
    • /
    • pp.151-162
    • /
    • 2014
  • Genetically-modified mesenchymal stem cells (GM-MSCs) have emerged as promising therapeutic tools for orthopedic degenerative diseases. GM-MSCs have been widely reported that they are able to increase bone and cartilage tissue regeneration not only by secreting transgene products such as growth factors in a long-term manner, also by inducing MSCs into tissue-specific cells. For example, MSCs modified with BMP-2 gene increased secretion of BMP-2 protein resulting in enhancement of bone regeneration, while MSCs with TGF-b gene did cartilage regeneration. In this review, we introduce several growth factors for gene delivery to MSCs and strategies for bone and cartilage tissue regeneration using GM-MSCs. Furthermore, we describe strategies for strengthening GM-MSCs to more intensively induce tissue regeneration by co-delivery system of multiple genes.

Fracture behavior modeling of a 3D crack emanated from bony inclusion in the cement PMMA of total hip replacement

  • Mohamed, Cherfi;Abderahmane, Sahli;Benbarek, Smail
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.37-43
    • /
    • 2018
  • In orthopedic surgery and in particular in total hip arthroplasty, the implant fixation is carried out using a surgical cement called polymethylmethacrylat (PMMA). This cement has to insure a good adhesion between implant and bone and a good load distribution to the bone. By its fragile nature, the cement can easily break when it is subjected to a high stress gradient by presenting a craze zone in the vicinity of inclusion. The focus of this study is to analyze the effect of inclusion in some zone of cement in which the loading condition can lead to the crack opening leading to their propagation and consequently the aseptic loosening of the THR. In this study, the fracture behavior of the bone cement including a strange body (bone remain) from which the onset of a crack is supposed. The effect of loading condition, the geometry, the presence of both crack and inclusion on the stress distribution and the fracture behavior of the cement. Results show that the highest stresses are located around the sharp tip of bony inclusion. Most critical cracks are located in the middle of the cement mantle when they are subjected to one leg standing state loading during walking.

Peri-implant bone length changes and survival rates of implants penetrating the sinus membrane at the posterior maxilla in patients with limited vertical bone height

  • Kim, Hae-Young;Yang, Jin-Yong;Chung, Bo-Yoon;Kim, Jeong Chan;Yeo, In-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.2
    • /
    • pp.58-63
    • /
    • 2013
  • Purpose: The aim of this study was to measure the peri-implant bone length surrounding implants that penetrate the sinus membrane at the posterior maxilla and to evaluate the survival rate of these implants. Methods: Treatment records and orthopantomographs of 39 patients were reviewed and analyzed. The patients had partial edentulism at the posterior maxilla and limited vertical bone height below the maxillary sinus. Implants were inserted into the posterior maxilla, penetrating the sinus membrane. Four months after implant insertion, provisional resin restorations were temporarily cemented to the abutments and used for one month. Then, a final impression was taken at the abutment level, and final cement-retained restorations were delivered with mutually protected occlusion. The complications from the implant surgery were examined, the number of failed implants was counted, and the survival rate was calculated. The periimplant bone lengths were measured using radiographs. The changes in initial and final peri-implant bone lengths were statistically analyzed. Results: Nasal bleeding occurred after implant surgery in three patients. No other complications were found. There were no failures of the investigated implants, resulting in a survival rate of 100%. Significantly more bone gain around the implants (estimated difference=-0.6 mm, P=0.025) occurred when the initial residual bone height was less than 5 mm compared to the >5 mm groups. No significant change in peri-implant bone length was detected when the initial residual bone height was 5 mm or larger. Conclusions: This study suggests that implants penetrating the sinus membrane at the posterior maxilla in patients with limited vertical bone height may be safe and functional.

Biomechanical comparison of bone staple techniques for stabilizing tibial tuberosity fractures

  • Kyu-Tae Park;Min-Yeong Lee;Hwi-Yool Kim
    • Korean Journal of Veterinary Research
    • /
    • v.63 no.3
    • /
    • pp.24.1-24.6
    • /
    • 2023
  • This study compared the biomechanical properties of bone-stapling techniques with those of other fixation methods used for stabilizing tibial tuberosity fractures using 3-dimensionally (3D)-printed canine bone models. Twenty-eight 3D-printed bone models made from computed tomography scan files were used. Tibial tuberosity fractures were simulated using osteotomy. All samples were divided into 4 groups. Group 1 was stabilized with a pin and tension-band wire; group 2, with a pin and an 8 mm-wide bone staple; group 3, with 2 horizontally aligned pins and an 8 mm-wide bone staple; and group 4 with a 10 mm-wide bone staple. Tensile force was applied with vertical distraction until failure occurred. The load and displacement were recorded during the tests. The groups were compared based on the load required to cause displacements of 1, 2, and 3 mm. The maximum failure loads and modes were recorded. The loads at all displacements in group 4 were greater than those in groups 1, 2, and 3. The loads at 1, 2, and 3 mm displacements were similar in groups 1 and 3. There was no significant difference between groups 1 and 3. Groups 1 and 4 provided greater maximum failure loads than groups 2 and 3. Failure occurred because of tearing of the nylon rope, tibial fracture, wire breakage, pin bending, and fracture around the bone staple insertion. In conclusion, these results demonstrate that the bone-stapling technique is an acceptable alternative to tension-band wire fixation for the stabilization of tibial tuberosity fractures in canine bone models.

Does the prosthesis weight matter? 3D finite element analysis of a fixed implant-supported prosthesis at different weights and implant numbers

  • Tribst, Joao Paulo Mendes;Dal Piva, Amanda Maria de Oliveira;Borges, Alexandre Luiz Souto;Rodrigues, Vinicius Aneas;Bottino, Marco Antonio;Kleverlaan, Cornelis Johannes
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2020
  • PURPOSE. This study evaluated the influence of prosthesis weight and number of implants on the bone tissue microstrain. MATERIALS AND METHODS. Fifteen (15) fixed full-arch implant-supported prosthesis designs were created using a modeling software with different numbers of implants (4, 6, or 8) and prosthesis weights (10, 15, 20, 40, or 60 g). Each solid was imported to the computer aided engineering software and tetrahedral elements formed the mesh. The material properties were assigned to each solid with isotropic and homogeneous behavior. The friction coefficient was set as 0.3 between all the metallic interfaces, 0.65 for the cortical bone-implant interface, and 0.77 for the cancellous bone-implant interface. The standard earth gravity was defined along the Z-axis and the bone was fixed. The resulting equivalent strain was assumed as failure criteria. RESULTS. The prosthesis weight was related to the bone strain. The more implants installed, the less the amount of strain generated in the bone. The most critical situation was the use of a 60 g prosthesis supported by 4 implants with the largest calculated magnitude of 39.9 mm/mm, thereby suggesting that there was no group able to induce bone remodeling simply due to the prosthesis weight. CONCLUSION. Heavier prostheses under the effect of gravity force are related to more strain being generated around the implants. Installing more implants to support the prosthesis enables attenuating the effects observed in the bone. The simulated prostheses were not able to generate harmful values of peri-implant bone strain.

Anatomy, Biomechanics and Physical Examination of Foot and Ankle (족부 및 족관절의 해부학, 생역학 및 신체 검사)

  • Hur, Chang-Yong;Kim, Hak Jun
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.3 no.1
    • /
    • pp.32-37
    • /
    • 2010
  • Ultrasonographic diagnosis and treatment in Orthopaedic fields had been widely used. Sonographic diagnosis and treatment of foot and ankle is convenient because of anatomical characteristics. The knowledge of the anatomy and biomechanics in foot and ankle area can help to diagnose and treat the disease around foot and ankle. 28 bone and many tendons, ligaments and muscles are consist of ankle and foot joint and the coordinative relation among these structures can allow the dual function, weight bearing and locomotion of ankle and foot during gait cycle. Foot and ankle have small room for many structures, so systemically physical examination is essential for diagnosis. Accurate understanding of foot and ankle anatomy and biomechanics could be helpful to using ultrasonograph.

  • PDF

Effects of Dietary from Safflower Bud on the Osteoporosis in Ovariectomized Rats

  • Lim, Seul Ki;Kim, Dong Il;Park, Min Jung;Choi, Joo Hee;Kim, Young Kuk;Lee, An Chul;Choi, Mi Young;Park, Soo Hyun
    • Biomedical Science Letters
    • /
    • v.20 no.3
    • /
    • pp.156-161
    • /
    • 2014
  • It has been reported that safflower seeds have preventive effects against osteoporosis. Recently, safflower buds (SB) were found to have more useful functional ingredients than safflower seeds. In the current study, we evaluated the anti-osteoporosis effects of SB diet in ovariectomized (OVX) rats. The rats were divided into five groups; sham operated group, OVX alone group, OVX plus $17{\beta}$-estradiol ($E^2$ $10{\mu}g/kg$, i.p.) and OVX plus SB diet feeding group (0.3% or 1%). Feeding of SB diet (0.3% or 1%) to OVX rats markedly increased bone mineral density (BMD) of femurs, compared to the OVX group. The OVX rats exhibited a marked increase in trabecular separation (Tb.Sp) and this change was inhibited by the feeding of SB diet, similar to that seen with OVX+E2 group. Moreover, feeding of SB diet to OVX rats decreased the markers of bone turnover, including osteocalcin and alkaline phosphatase (ALP). These results suggest that SB extract has a bone sparing effect in OVX-induced trabecular bone loss and prevents deterioration of bone microarchitecture by suppressing the rate of bone turnover. Therefore, SB may be useful for preserving bone mass and structure in estrogen deficient women with a potential role in reducing postmenopausal osteoporosis.

Biocompatibility study of lithium disilicate and zirconium oxide ceramics for esthetic dental abutments

  • Brunot-Gohin, Celine;Duval, Jean-Luc;Verbeke, Sandra;Belanger, Kayla;Pezron, Isabelle;Kugel, Gerard;Laurent-Maquin, Dominique;Gangloff, Sophie;Egles, Christophe
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.6
    • /
    • pp.362-371
    • /
    • 2016
  • Purpose: The increasing demand for esthetically pleasing results has contributed to the use of ceramics for dental implant abutments. The aim of this study was to compare the biological response of epithelial tissue cultivated on lithium disilicate ($LS_2$) and zirconium oxide ($ZrO_2$) ceramics. Understanding the relevant physicochemical and mechanical properties of these ceramics will help identify the optimal material for facilitating gingival wound closure. Methods: Both biomaterials were prepared with 2 different surface treatments: raw and polished. Their physicochemical characteristics were analyzed by contact angle measurements, scanning white-light interferometry, and scanning electron microscopy. An organotypic culture was then performed using a chicken epithelium model to simulate peri-implant soft tissue. We measured the contact angle, hydrophobicity, and roughness of the materials as well as the tissue behavior at their surfaces (cell migration and cell adhesion). Results: The best cell migration was observed on $ZrO_2$ ceramic. Cell adhesion was also drastically lower on the polished $ZrO_2$ ceramic than on both the raw and polished $LS_2$. Evaluating various surface topographies of $LS_2$ showed that increasing surface roughness improved cell adhesion, leading to an increase of up to 13%. Conclusions: Our results demonstrate that a biomaterial, here $LS_2$, can be modified using simple surface changes in order to finely modulate soft tissue adhesion. Strong adhesion at the abutment associated with weak migration assists in gingival wound healing. On the same material, polishing can reduce cell adhesion without drastically modifying cell migration. A comparison of $LS_2$ and $ZrO_2$ ceramic showed that $LS_2$ was more conducive to creating varying tissue reactions. Our results can help dental surgeons to choose, especially for esthetic implant abutments, the most appropriate biomaterial as well as the most appropriate surface treatment to use in accordance with specific clinical dental applications.

Development of the Osseo-integrated Implant system for Laboratory Animals (동물실험용 골융합 임플란트 시스템 개발)

  • Bae, Tae-Soo;Heo, Hyun;Kim, Shin-Ki;Mun, Mu-Seong;Ahn, Jae-Yong;Hong, Sung-Ran
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.10
    • /
    • pp.117-122
    • /
    • 2007
  • The novel implant system was developed using osseo-integration technology which enable amputee to overcome skin troubles in use of previous socket system and was evaluated in view of biomechanics, radiology, histology, and pathology. The osseo-integrated implants were designed and manufactured using CT image of canine's tibia and were applied to laboratory animals (canines). The follow-up studies were performed for 24 months with 10 canines. In radiology examination, we found that the relative low strain distribution caused medial and posterior bone resorption and then we verified them by biomechanical testing. In histological approach, the complete osseo-integration was observed through the activity of osteoblast cells around bone-implant interface and the radial outer region of bone due to peristeum reaction. Lastly in pathological aspect, the evidence of superficial infection was detected but that of deep infection was not. Therefore it is thought that infection problem will be overcome by immunity of body and good hygiene.

Measures of micromotion in cementless femoral stems-review of current methodologies

  • Solitro, Giovanni F;Whitlock, Keith;Amirouche, Farid;Santis, Catherine
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.2
    • /
    • pp.85-104
    • /
    • 2016
  • Stability and loosening of implanted femoral stems in Total Hip Replacement have been well established as barriers to the primary concerns of osseointegration and long term implant survival. In-vitro experiments and finite element modeling have for years been used as a primary tool to assess the bone stem interface with variable methodologies leading to a wide range of micromotion, interference fit and stress shielding values in the literature. The current study aims to provide a comprehensive review of currently utilized methodologies for in-vitro mechanical testing as well as finite element modeling of both micromotion and interference of implanted femoral stems. A total of 12 studies detailed in 33 articles were selected for inclusion. Experimental values of micromotion ranged from 12 to $182{\mu}m$ while finite element analysis reported a wider range from 2.74 to $1,277{\mu}m$. Only two studies were found that modeled bone/implant contact with consideration for interference fit. In studies evaluating stem micromotion in THA, the reference surface at the bone/stem interface should be well defined. Additionally, the amount of penetration considered should be disclosed and associated with bone density and roughness.