• Title/Summary/Keyword: Bone Structure

Search Result 539, Processing Time 0.034 seconds

Effects of crown retrieval on implants and the surrounding bone: a finite element analysis

  • Ozkir, Serhat Emre;Unal, Server Mutluay;Yurekli, Emel;Guven, Sedat
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.2
    • /
    • pp.131-136
    • /
    • 2016
  • PURPOSE. The aim of this study was to observe stress concentration in the implant, the surrounding bone, and other components under the pull-out force during the crown removal. MATERIALS AND METHODS. Two 3-dimensional models of implant-supported conventional metal ceramic crowns were digitally constructed. One model was designed as a vertically placed implant ($3.7mm{\times}10mm$) with a straight abutment, and the other model was designed as a 30-degree inclined implant ($3.7mm{\times}10mm$) with an angled abutment. A pull-out force of 40 N was applied to the crown. The stress values were calculated within the dental implant, the abutment, the abutment screw, and the surrounding bone. RESULTS. The highest stress concentration was observed at the coronal portion of the straight implant (9.29 MPa). The stress concentrations at the cortical bone were lower than at the implants, and maximum stress concentration in bone structure was 1.73 MPa. At the abutment screws, the stress concentration levels were similiar (3.09 MPa and 3.44 MPa), but the localizations were different. The stress at the angled abutment was higher than the stress at the straight abutment. CONCLUSION. The pull-out force, applied during a crown removal, did not show an evident effect in bone structure. The higher stress concentrations were mostly observed at the implant and the abutment collar. In addition, the abutment screw, which is the weakest part of an implant system, also showed stress concentrations. Implant angulation affected the stress concentration levels and localizations. CLINICAL IMPLICATIONS. These results will help clinicians understand the mechanical behavior of cement-retained implant-supported crowns during crown retrieval.

Biomechanical stress and microgap analysis of bone-level and tissue-level implant abutment structure according to the five different directions of occlusal loads

  • Kim, Jae-Hoon;Noh, Gunwoo;Hong, Seoung-Jin;Lee, Hyeonjong
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.316-321
    • /
    • 2020
  • PURPOSE. The stress distribution and microgap formation on an implant abutment structure was evaluated to determine the relationship between the direction of the load and the stress value. MATERIALS AND METHODS. Two types of three-dimensional models for the mandibular first molar were designed: bone-level implant and tissue-level implant. Each group consisted of an implant, surrounding bone, abutment, screw, and crown. Static finite element analysis was simulated through 200 N of occlusal load and preload at five different load directions: 0, 15, 30, 45, and 60°. The von Mises stress of the abutment and implant was evaluated. Microgap formation on the implant-abutment interface was also analyzed. RESULTS. The stress values in the implant were as follows: 525, 322, 561, 778, and 1150 MPa in a bone level implant, and 254, 182, 259, 364, and 436 MPa in a tissue level implant at a load direction of 0, 15, 30, 45, and 60°, respectively. For microgap formation between the implant and abutment interface, three to seven-micron gaps were observed in the bone level implant under a load at 45 and 60°. In contrast, a three-micron gap was observed in the tissue level implant under a load at only 60°. CONCLUSION. The mean stress of bone-level implant showed 2.2 times higher than that of tissue-level implant. When considering the loading point of occlusal surface and the direction of load, higher stress was noted when the vector was from the center of rotation in the implant prostheses.

Numerical simulation of the femur fracture under static loading

  • El Sallah, Zagane Mohammed;Smail, Benbarek;Abderahmane, Sahli;Bouiadjra, B. Bachir;Boualem, Serier
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.405-412
    • /
    • 2016
  • Bone is a living material with a complex hierarchical structure that gives it remarkable mechanical properties. Bone constantly undergoes mechanical. Its quality and resistance to fracture is constantly changing over time through the process of bone remodeling. Numerical modeling allows the study of the bone mechanical behavior and the prediction of different trauma caused by accidents without expose humans to real tests. The aim of this work is the modeling of the femur fracture under static solicitation to create a numerical model to simulate this element fracture. This modeling will contribute to improve the design of the indoor environment to be better safe for the passengers' transportation means. Results show that vertical loading leads to the femur neck fracture and horizontal loading leads to the fracture of the femur diaphysis. The isotropic consideration of the bone leads to bone fracture by crack propagation but the orthotropic consideration leads to the fragmentation of the bone.

Pelvic Bone Fracture with Preperitoneal Hemorrhage (전복막출혈이 동반된 골반골절)

  • Kim, Joong Suck;Sul, Young Hoon;Go, Seung Je;Ye, Jin Bong;Park, Sang Soon;Ku, Gwan Woo;Kim, Yeong Cheol
    • Journal of Trauma and Injury
    • /
    • v.28 no.4
    • /
    • pp.272-275
    • /
    • 2015
  • Pelvic bone fracture with unstable vital signs is a life-threatening condition demanding proper diagnosis and immediate treatment. Unlike long bones, the pelvic bone is a three dimensional structure with complex holes and grooves for vessels and nerves. Because of this complexity, a pelvic bone fracture can lead to complicated and serious bleeding. We report a case of a fifty-year-old male suffering from a pelvic bone fracture due to a fall. An imaging study showed fractures of both the superior and the inferior ramus of the pubic bone, with contrast extravasation underneath them, resulting in a large preperitoneal hematoma. He was sent for angiography, which revealed a hemorrhage from a branch of the left obturator artery. Embolization was done with a glue and lipiodol mixture. The patient recovered without complication, and was discharged at four weeks after admission.

  • PDF

A retrospective clinical investigation for the effectiveness of closed reduction on nasal bone fracture

  • Kang, Byung-Hun;Kang, Hyo-Sun;Han, Jeong Joon;Jung, Seunggon;Park, Hong-Ju;Oh, Hee-Kyun;Kook, Min-Suk
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.53.1-53.6
    • /
    • 2019
  • Background: The nasal bone is the most protruding bony structure of the facial bones. Nasal bone fracture is the most common facial bone fracture. The high rate of incidence of nasal bone fracture emphasizes the need for systematical investigation of epidemiology, surgical techniques, and complications after surgery. The objective of this study is to investigate the current trends in the treatment of nasal bone fractures and the effectiveness of closed reduction depending on the severity of the nasal bone fracture. Patients and methods: A total of 179 patients with a nasal bone fracture from 2009 to 2017 were enrolled. Their clinical examination, patient's records, and radiographic images of nasal bone fractures were evaluated. Results: Patients ranged from children to elderly. There were 156 (87.2%) males and 23 (12.8%) females. Traffic accident (36.9%) was the most common cause of nasal fracture. Orbit fracture (44 patients, 24.6%) was the most common fracture associated with a nasal bone fracture. Complications after surgery included postoperative deformity in 20 (11.2%) patients, nasal obstruction in 11 (6.1%) patients, and olfactory disturbances in 2 (1.1%) patients and patients with more severe nasal bone fractures had higher rates of these complications. Conclusion: Closed reduction could be performed successfully within 2 weeks after injury.

THE HISTOLOGIC STUDY OF THE GRAFTED hBMP-I FOR IMMEDIATE IMPLANT FIXATION (발치 후 즉시 임플란트 식립시 이식된 hBMP-I의 조직학적 고찰)

  • Lee, Eun-Young;Kim, Kyoung-Won;Choi, Hee-Won;Um, In-Woong;Chung, Ho-Yong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.4
    • /
    • pp.316-322
    • /
    • 2004
  • A low molecular weight component named bone morphogenetic protein(BMP) chemically isolated from the organic matrix of bone, induce postfetal connective tissue cells surrounding small blood vessels to differentiate into cartilage and bone. The end product of BMP is a spherical ossicle of lamella bone filled with red bone marrow for the functional loading. This is a important point that the graft material is embedded the defect site during the implant surgery. Because present knowledge of the relationship between BMP and bone regeneration arises mainly from studies of induced bone formation in heterotopic sites, it would be helpful to determine whether BMP plays any part in the process of bone healing. The BMPs have been shown to play crucial roles in normal skeletal development as well as bone healing and are able to activate transcription of genes involved in cellular migration, proliferation, and differentiation. The delivery of BMP on matrices has been efficacious in the treatment of defect bone in implant surgery. The purpose of the histologic study was to evaluate the effect of DLB(demineralized lyophilized bone) coated with purified human BMP(hBMP-I) in immediate implant surgery with bony defect to obtain the functional structure of implant asap. The ability of a graft of hBMP-I to accelerate bony defect repair provides a rationale for its use in immediate implant surgery that have large bone defect in edentulous area.

Analysis on correlation between bone strength by FEA, micro-CT parameters and bone mineral density (유한요소법에 의한 골강도와 micro-CT 지표 및 골밀도간의 상관관계)

  • Yoon, Young-Nam;Lee, Wan;Lee, Byung-Do
    • Imaging Science in Dentistry
    • /
    • v.37 no.1
    • /
    • pp.53-59
    • /
    • 2007
  • Purpose : Bone mineral density (BMD) and bone microarchitecture are important determinants for bone strength. Recently micro-CT have provided possibilities for measuring a variety of structural indices to characterize bone microarchitecture. The objective of this study was to compare the BMD and micro-CT parameters with Young's modulus calculated by finite element analysis (FEA) for the evaluation of bone strength. Materials and Methods Bone specimens were obtained from the 18 female rabbits aged 16 weeks. Of those, 36 samples (right and left femur) were selected for 3D micro-CT analysis $(ANT^{TM},\;SKYSCAN,\;Belgium)$ and BMD by PIXlmus 2 (GE Lunar Co. USA). Five microstructural parameters of micro-CT, such as trabecular thickness (Tb.Th), bone specific surface (BS/BV), percent bone volume (BV/TV), structure model index (SMI) and degree of anisotropy (DOA) were studied. Young's modulus was obtained by software program (ANSYS 9.0, ANSYS Inc, Canonsburg, PA) based on micro-CT three dimensional images. Results : Young's modulus assessed by FEA correlated significantly with Tb.Th, BV/TV, BS/BV and SMI respectively. Young's modulus showed higher correlation with these rnicrostructural parameters of micro-CT than BMD. Microstructural parameters except DOA showed significant correlations within the examined group. Conclusion The microarchitectural parameters o( micro-CT and BMD represented some informations in the evaluation of bone strength assessed by FEA.

  • PDF

Variations of Speed of Sound and Attenuation Coefficient with Porosity and Structure in Bone Mimics (뼈 모사체에서 다공율 및 구조에 대한 음속 및 감쇠계수의 변화)

  • Kim, Seong-Il;Choi, Min-Joo;Lee, Kang-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.388-394
    • /
    • 2010
  • In the present study, polyacetal bone mimics with circular cylindrical pores were used to investigate variations of speed of sound and attenuation coefficient with porosity and microarchitecture in bone. The speed of sound and attenuation coefficient of the 6 bone mimics with porosities from 0 % to 65.9 % were measured by a through-transmission method in water, using a pair of broadband, unfocused transducers with a diameter of 12.7 mm and a center frequency of 1.0 MHz. Independently of the structural properties of the bone mimics, the speed of sound decreased almost linearly with the increasing porosity. The attenuation coefficient measured at 1.0 MHz exhibited linear or nonlinear correlations with the porosity, depending on the structural properties of the bone mimics. These results are consistent with those previously published by other researchers using bone samples and mimics, and advances our understanding of the relationships of the ultrasonic parameters for the diagnosis of osteoporosis with the bone density and microarchitecture in human bones.

Implant fixed prosthetic treatment using CAD/CAM system in a patient with severe alveolar resorption (임상가를 위한 특집 3 - 심하게 흡수된 치조제를 가진 환자에서 CAD/CAM을 이용한 임플란트 고정성 보철치료)

  • Choi, Yu-Sung
    • The Journal of the Korean dental association
    • /
    • v.50 no.3
    • /
    • pp.126-139
    • /
    • 2012
  • Loss of dentition can lead to not only compromised esthetics and functions of the patient, but also alveolar bone resorption. Bone grafting with prosthetic reconstruction of the gingiva can be selected for the treatment, and it provides many benefits as prosthetic gingival reconstruction does not require a complicated surgical process and is available within a short period of time, with stable clinical results. However, conventional porcelain fused to metal prosthesis has certain limits due to its size, and deformation after several firing procedures. In this clinical report, the author would like to introduce a patient with severe alveolar resorption who was treated with gingiva-shaped zirconia/titanium CAD/CAM implant fixed prosthesis for esthetic and functional rehabilitation. Clinical reports Clinical report 1, 2 : A case of loss of anterior dentition with atrophied alveolar bone. Implant retained zirconia bridge applied with Procera implant bridge system to simulate the gingiva. Upper structure was fabricated with zirconia all ceramic crown. Clinical report 3, 4 : A case of atrophied maxillary alveolus was reconstructed with fixed implant prosthesis, a CAD/CAM designed titanium structure covered wi th resin on its surface. Anterior dentition was reconstructed with zirconia crown. Conclusion and clinical uses. All patients were satisfied with the outcome, and maintained good oral hygiene. Zirconia/titanium implant fixed prosthesis fabricated by CAD/CAM system was highly accurate and showed adequate histological response. No critical failure was seen on the implant fixture and abutment overall. Sites of severe alveolar bone loss can be rehabilitated by implant fixed prosthesis with CAD/CAM system. This type of prosthesis can offer artificial gingival structure and can give more satisfying esthetics and functions, and as a result the patients were able to accept the outcome more fondly, which makes us less than hard to think that it can be a more convenient treatment for the practitioners.

Design of a RANK-Mimetic Peptide Inhibitor of Osteoclastogenesis with Enhanced RANKL-Binding Affinity

  • Hur, Jeonghwan;Ghosh, Ambarnil;Kim, Kabsun;Ta, Hai Minh;Kim, Hyunju;Kim, Nacksung;Hwang, Hye-Yeon;Kim, Kyeong Kyu
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.316-321
    • /
    • 2016
  • The receptor activator of nuclear factor ${\kappa}B$ (RANK) and its ligand RANKL are key regulators of osteoclastogenesis and well-recognized targets in developing treatments for bone disorders associated with excessive bone resorption, such as osteoporosis. Our previous work on the structure of the RANK-RANKL complex revealed that Loop3 of RANK, specifically the non-canonical disulfide bond at the tip, performs a crucial role in specific recognition of RANKL. It also demonstrated that peptide mimics of Loop3 were capable of interfering with the function of RANKL in osteoclastogenesis. Here, we reported the structure-based design of a smaller peptide with enhanced inhibitory efficiency. The kinetic analysis and osteoclast differentiation assay showed that in addition to the sharp turn induced by the disulfide bond, two consecutive arginine residues were also important for binding to RANKL and inhibiting osteoclastogenesis. Docking and molecular dynamics simulations proposed the binding mode of the peptide to the RANKL trimer, showing that the arginine residues provide electrostatic interactions with RANKL and contribute to stabilizing the complex. These findings provided useful information for the rational design of therapeutics for bone diseases associated with RANK/RANKL function.