• Title/Summary/Keyword: Bone Regeneration

Search Result 1,027, Processing Time 0.035 seconds

Comparison of unprocessed silk cocoon and silk cocoon middle layer membranes for guided bone regeneration

  • Kim, Seong-Gon;Kim, Min-Keun;Kweon, HaeYong;Jo, You-Young;Lee, Kwang-Gill;Lee, Jeong Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.11.1-11.8
    • /
    • 2016
  • Background: Silk cocoon is composed of multiple layers. The natural silk cocoon containing all layers was cut as a rectangular shape as defined as total group. The inner and outermost layers were removed from the total group and the remained mat was defined as the middle group. The objectives of this study was to compare the total group with the middle group as a barrier membrane for the guided bone regeneration. Methods: The effects of these materials on the cellular proliferation and alkaline phosphatase (ALP) expression of MG63 cells were explored. For comparing bone regeneration ability, bilateral bone defects were created in calvarial areas in ten adult New Zealand white rabbits. The defects were covered with silk membranes of the middle group, with silk membrane of the total group used as the control on the contralateral side. The defects were allowed to heal for 4 and 8 weeks. Micro-computerized tomography (${\mu}CT$) and histological examination were performed. Results: The middle group exhibited a higher MTT value 48 and 72 h after treatment compared to the total group. ALP expression was also higher in the middle group. The results of ${\mu}CT$ and histologic examination showed that new bone formation was significantly higher in the middle group compared to the total group 8 weeks postoperatively (P < 0.05). Conclusions: In conclusion, the middle layer of the silk cocoon supports guided bone regeneration better than unprocessed silk cocoon.

Novel analysis model for implant osseointegration using ectopic bone formation via the recombinant human bone morphogenetic protein-2/macroporous biphasic calcium phosphate block system in rats: a proof-of-concept study

  • Park, Jung-Chul;Lee, Jong-Bin;Daculsi, Guy;Oh, Sang-Yeop;Cho, Kyoo-Sung;Im, Gun-Il;Kim, Byung-Soo;Kim, Chang-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.4
    • /
    • pp.136-143
    • /
    • 2012
  • Purpose: The osseointegration around titanium mini-implants installed in macroporous biphasic calcium phosphate (MBCP) blocks was evaluated after incubation with recombinant human bone morphogenetic protein-2 (rhBMP-2) in an ectopic subcutaneous rat model. Methods: Mini-implants (${\varphi}1.8{\times}12$ mm) were installed in MBCP blocks (bMBCPs, $4{\times}5{\times}15$ mm) loaded with rhBMP-2 at 0.1 mg/mL, and then implanted for 8 weeks into subcutaneous pockets of male Sprague-Dawley rats (n=10). A histomorphometric analysis was performed, and the bone-to-implant contact (BIC) and bone density were evaluated. Results: Significant osteoinductive activity was induced in the rhBMP-2/bMBCP group. The percentage of BIC was $41.23{\pm}4.13%$ (mean${\pm}$standard deviation), while bone density was $33.47{\pm}5.73%$. In contrast, no bone formation was observed in the bMBCP only group. Conclusions: This model represents a more standardized tool for analyzing osseointegration and bone healing along the implant surface and in bMBCPs that excludes various healing factors derived from selected animals and defect models.

A randomized controlled clinical study of periodontal tissue regeneration using an extracellular matrix-based resorbable membrane in combination with a collagenated bovine bone graft in intrabony defects

  • Kim, Sulhee;Chang, Hyeyoon;Hwang, Jin wook;Kim, Sungtae;Koo, Ki-Tae;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Lee, Jong-Ho;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.6
    • /
    • pp.363-371
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the feasibility of regenerative therapy with a collagenated bone graft and resorbable membrane in intrabony defects, and to evaluate the effects of the novel extracellular matrix (ECM)-based membrane clinically and radiologically. Methods: Periodontal tissue regeneration procedure was performed using an ECM-based resorbable membrane in combination with a collagenated bovine bone graft in intrabony defects around the teeth and implants. A novel extracellular matrix membrane (NEM) and a widely-used membrane (WEM) were randomly applied to the test group and the control group, respectively. Cone-beam computed tomography images were obtained on the day of surgery and 6 months after the procedure. Alginate impressions were taken and plaster models were made 1 week and 6 months postoperatively. Results: The quantity of bone tissue, the dimensional changes of the surgically treated intrabony defects, and the changes in width and height below the grafted bone substitutes showed no significant difference between the test and control groups at the 6-month examination. Conclusions: The use of NEM for periodontal regeneration with a collagenated bovine bone graft showed similar clinical and radiologic results to those obtained using WEM.

Determination of the optimal diabetes duration for bone regeneration experiments in an alloxan-induced diabetic rabbit calvarial defect model

  • Jeong, Sang-Hun;Jung, Bo Hyun;Yoo, Ki-Yeon;Um, Heung-Sik;Chang, Beom-Seok;Lee, Jae-Kwan;Choi, Won-Youl
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.6
    • /
    • pp.383-394
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the optimal diabetes duration for bone regeneration experiments in an alloxan monohydrate (ALX)-induced diabetic rabbit calvarial defect model by evaluating the association between diabetes duration and bone healing capacity. Methods: Twenty-four New Zealand white rabbits were used. Twenty-two rabbits were injected with 100 mg/kg of ALX to induce experimental diabetes. These rabbits were divided into 4 groups, including a control group and groups with diabetes durations of 1 week (group 1), 2 weeks (group 2), and 4 weeks (group 3). Calvarial defects were created at 1, 2, and 4 weeks after ALX injection and in the control rabbits. Cone-beam computed tomography (CBCT) scanning was performed on the day of surgery and at 2 and 4 weeks after surgery. The rabbits were sacrificed 4 weeks after surgery, followed by histological and immunofluorescence analysis. Results: The diabetic state of all diabetic rabbits was well-maintained throughout the experiment. Reconstructed 3-dimensional CBCT imaging showed more rapid and prominent bone regeneration in the control group than in the experimental groups. Histological staining showed notable bone regeneration in the control group, in contrast to scarce bone formation in the experimental groups. The appearance and immunoreactivity of receptor activator of nuclear factor-kappa B and osteoprotegerin did not show notable differences among the groups. Conclusion: ALX administration at 100 mg/kg successfully induced experimental diabetes in rabbits. The effect of diabetes on bone healing was evident when the interval between diabetes induction and the intervention was ${\geq}1$ week.

Guided bone regeneration

  • Kim, Young-Kyun;Ku, Jeong-Kui
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.46 no.5
    • /
    • pp.361-366
    • /
    • 2020
  • Guided bone regeneration (GBR) is a surgical procedure that utilizes bone grafts with barrier membranes to reconstruct small defects around dental implants. This procedure is commonly deployed on dehiscence or fenestration defects ≥2 mm, and mixing with autogenous bone is recommended on larger defects. Tension-free primary closure is a critical factor to prevent wound dehiscence, which is critical cause of GBR failure. A barrier membrane should be rigidly fixed without mobility. If the barrier is exposed, closed monitoring should be utilized to prevent secondary infection.

Clinical and histopathological study on the effect of Nonresorbable membrane with Demineralized freeze dried bone graft for Guided Bone Regeneration in Implant Dehiscence Defects (매식체 주위 열개형 골결손부에서 차단막과 골 이식술의 사용이 골 형성에 미치는 영향에 대한 임상 및 조직병리학적 연구)

  • Kwon, Chil-Sung;Hong, Ki-Seok;Lim, Sung-Bin;Chung, Chin-Hyung;Lee, Chong-Heon
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.3
    • /
    • pp.687-702
    • /
    • 2005
  • The purpose of this study is to examine the effect of non-resorbable membrane such as e-PTFE which was used with DFDB in bone regeneration on dehiscence defect in peri-implant area. Amomg the patients, who have recieved an implant surgery at the department of Periodontics in Dan Kook University Dental Hospital, 12 patients showed implant exposure due to the dehiscence defect and 15 implants of these 22 patients were the target of the treatment. Periodontists randomly applied $Gore-Tex^{(R)}$ to the patients and treated them with antibiotics for five days both preoperatively and postoperatively. Reentry period was 26 weeks on average in maxilla and 14 weeks on average in mandible. The results were as follows : 1. Dehiscence bone defect frequently appeared in premolar in mandible and anterior teeth in maxilla respectively. 2. Among 15 cases, 1 membrane exposure was observed and in this case, regenerated area was decreased. 3. In non-resorbable membrane, bone surface area $9.25{\pm}4.84$ preoperatively and significantly increased to $11.48{\pm}7.52$ postoperatively(0.05). 4. The increase of bone surface area in non-resorbable membrane was $2.23{\pm}3.38$. 5. As a result of histopathological finding, DFDB surrounded by new bone formation and lamellate bone, resorption of DFDB and bone mineralization was found. Also, fibrosis of connective tissue beneath the membrane was found. This study shows that the surgical method using DFDB and non-resorbable membrane on dehiscence defect in peri-implant area is effective in bone regeneration.

The optimal dosage of hyaluronic acid for bone regeneration in rat calvarial defects

  • Ling Li;Jungwon Lee;Young-Dan Cho;Sungtae Kim;Yang-Jo Seol;Yong-Moo Lee;Ki-Tae Koo
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.4
    • /
    • pp.259-268
    • /
    • 2023
  • Purpose: Hyaluronic acid (HA) affects angiogenesis and promotes the migration and differentiation of mesenchymal cells, thereby activating the osteogenic ability of osteoblasts. Although studies on the action of HA during bone regeneration are being actively conducted, the optimal dose of HA required for bone regeneration remains unclear. Therefore, the purpose of this study was to elucidate the most effective HA dose for bone formation using a rat critical-size defect model. Methods: Thirty rats were randomly divided into 5 groups, with 6 rats in each group. An absorbable collagen sponge soaked with HA or saline was used to fill an 8-mm defect, which was then covered with a collagen membrane. Different treatments were performed for each group as follows: (1) saline control, (2) 1 mg/mL HA, (3) 25 mg/mL HA, (4) 50 mg/mL HA, or (5) 75 mg/mL HA. After a healing period of 4 weeks, micro-computed tomography and histological analysis were performed. The obtained values were analyzed using analysis of variance and the Tukey test (P<0.05). Results: At week 4, the 75 mg/mL HA group had the highest bone volume/total volume ratio, new bone, and bone fill among the 5 groups, and these values were significantly different from those observed in the control group (P<0.01) and 1 mg/mL HA group (P<0.001). More active bone formation was observed in the higher-dose HA groups (25 mg/mL, 50 mg/mL, and 75 mg/mL HA), which included a large amount of woven bone. Conclusions: The 75 mg/mL HA group showed better bone formation than the other groups (1, 25, and 50 mg/mL HA and control).

SUTURE TECHNIQUE FOR SUCCESSFUL GUIDED BONE REGENERATION ; PRELIMINARY REPORT OF DOUBLE LAYERED SUTURE TECHNIQUE WITH SUBGINGIVAL SUTURE (성공적인 골유도재생술을 위한 봉합술 : 점막하 봉합법을 이용한 이중 봉합술의 예비 보고)

  • Kim, Young-Bin;Cho, Sung-Dae;Leem, Dae-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.1
    • /
    • pp.86-91
    • /
    • 2009
  • The success of implants essentially depends on a sufficient volume of healthy bone at the recipient site during implant placement. In patients who have the severe alveolar bone resorption or pneumatized maxillary sinus, it should be performed that bone regeneration procedure before implant placement. Development of barrier membrane makes it possible that predictable result of alveolar bone reconstruction. Many kind of materials used for barrier membrane technique are introduced, non-absorbable or absorbable membranes. But, when operation site was ruptured with membrane exposure, bacterias can be grow up at the bone graft site. Then morphology and migration of fibroblast will be changed. It works as a negative factor on healing process of bone graft site. In oral and maxillofacial department of Chonbuk national university dental hospital, we use variable suture technique like as subgingival suture, vertical mattress suture, simple interrupted suture, if need, tenting suture after GBR or block bone graft. Within these suture technique, wound healing was excellent without complication, so now we take a report of suture technique in reconstruction of alveolar bone surgery.

THE EXPERIMENTAL STUDY OF THE BONE REGENERATION ON RABBIT MAXILLARY SINUS GRAFTING WITH ${\beta}$-TCP (가토 상악동에 이식된 ${\beta}$-TCP의 골치유에 관한 실험적 연구)

  • Park, Jung-Ha;Hwang, Kyung-Gyun;Park, Chang-Joo;Choi, Yong-Soo;Ma, Pyung-Soo;Paik, Seung-Sam;Shim, Kwang-Sup
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.2
    • /
    • pp.107-116
    • /
    • 2006
  • Purpose:Maxillay sinus grafting is an effective treatment procedure to improve bone height in the posterior maxillar area for implant installation. Beta-tricalciumphosphate(${\beta}$-TCP) was introduced to be grafting substitute material, providing a reasonable bio-degradation time, no need for harvesting procedure. The purpose of this study is to evaluate bone healing & regeneration phase using histomorphometric and immunohistochemical analysis. Material & Methods:Sixteen rabbits were divided into 4 groups. Bi-lateral maxillary sinus membranes were elevated at each rabbits, ${\beta}$-TCP was augmented in left sinus, autogenous bone was augmented in right sinus. The rabbits were sacrificed at 2, 4, 8 and 12 weeks. We investigated the bone regeneration & growth factor expression. Results: 1. The mean new bone volume formation was 28.99${\pm}$6.55%, 49.54${\pm}$5.47%, 69.09${\pm}$8.90% in autogenous grafted area, and 22.86${\pm}$5.56%, 24.00${\pm}$4.09%, 34.11${\pm}$3.37% in ${\beta}$-TCP area at 4, 8, 12 weeks. Therefore, new bone formation in autogenous bone was significantly higher than ${\beta}$-TCP (p<0.05). 2. The BMP 2/4 expression in autogenous bone grafted area was higher at 4, 8 weeks. 3. There was no difference in expression pattern of BMP-7/PDGF/VEGF during grafted bone regeneration. Conclusion:The authors we conclude that the autogenous bone graft was faster than ${\beta}$-TCP in bone regeneration, and the BMP 2/4 were more important in graft bone regeneration.