• Title/Summary/Keyword: Bone Implant Contact

Search Result 256, Processing Time 0.028 seconds

The effect of undersizing and tapping on bone to implant contact and implant primary stability: A histomorphometric study on bovine ribs

  • Di Stefano, Danilo Alessio;Perrotti, Vittoria;Greco, Gian Battista;Cappucci, Claudia;Arosio, Paolo;Piattelli, Adriano;Iezzi, Giovanna
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.227-235
    • /
    • 2018
  • PURPOSE. Implant site preparation may be adjusted to achieve the maximum possible primary stability. The aim of this investigation was to study the relation among bone-to-implant contact at insertion, bone density, and implant primary stability intra-operatively measured by a torque-measuring implant motor, when implant sites were undersized or tapped. MATERIALS AND METHODS. Undersized (n=14), standard (n=13), and tapped (n=13) implant sites were prepared on 9 segments of bovine ribs. After measuring bone density using the implant motor, 40 implants were placed, and their primary stability assessed by measuring the integral of the torque-depth insertion curve. Bovine ribs were then processed histologically, the bone-to-implant contact measured and statistically correlated to bone density and the integral. RESULTS. Bone-to-implant contact and the integral of the torque-depth curve were significantly greater for undersized sites than tapped sites. Moreover, a correlation between bone to implant contact, the integral and bone density was found under all preparation conditions. The slope of the bone-to-implant/density and integral/density lines was significantly greater for undersized sites, while those corresponding to standard prepared and tapped sites did not differ significantly. CONCLUSION. The integral of the torque-depth curve provided reliable information about bone-to-implant contact and primary implant stability even in tapped or undersized sites. The linear relations found among the parameters suggests a connection between extent and modality of undersizing and the corresponding increase of the integral and, consequently, of primary stability. These results might help the physician determine the extent of undersizing needed to achieve the proper implant primary stability, according to the planned loading protocol.

Characteristics of contact and distance osteogenesis around modified implant surfaces in rabbit tibiae

  • Choi, Jung-Yoo;Sim, Jae-Hyuk;Yeo, In-Sung Luke
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.3
    • /
    • pp.182-192
    • /
    • 2017
  • Purpose: Contact and distance osteogenesis occur around all endosseous dental implants. However, the mechanisms underlying these processes have not been fully elucidated. We hypothesized that these processes occur independently of each other. To test this, we used titanium (Ti) tubes to physically separate contact and distance osteogenesis, thus allowing contact osteogenesis to be measured in the absence of possible triggers from distance osteogenesis. Methods: Sandblasted and acid-etched (SLA) and modified SLA (modSLA) implants were used. Both types had been sandblasted with large grit and then etched with acid. The modSLA implants then underwent additional treatment to increase hydrophilicity. The implants were implanted into rabbit tibiae, and half were implanted within Ti tubes. The bone-to-implant contact (BIC) ratio was calculated for each implant. Immunohistochemical analyses of bone morphogenetic protein (BMP)-2 expression and new bone formation (Masson trichrome stain) were performed. Results: The implants outside of Ti tubes were associated with good bone formation along the implant surface. Implantation within a Ti tube significantly reduced the BIC ratio (P<0.001). Compared with the modSLA implants, the SLA implants were associated with significantly higher BIC ratios, regardless of the presence or absence of Ti tubes (P=0.043). In the absence of Ti tubes, the bone adjacent to the implant had areas of new bone formation that expressed BMP-2 at high levels. Conclusions: This study disproved the null hypothesis and suggested that contact osteogenesis is initiated by signals from the old bone that undergoes distance osteogenesis after drilling. This signal may be BMP-2.

AN EVALUATION OF ANGLES BETWEEN THE ALVEOLAR CREST BONE AND THE IMPLANT EFFECT ON THE IMPLANT CRESTAL AREA INDUCED STRESSES USING A FINITE ELEMENT METHOD (임플랜트와 경부골이 이루는 각도가 치경부 응력 발생에 미치는 영향)

  • Cho, Sung-Bum;Lee, Kyu-Bok;Jo, Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.274-282
    • /
    • 2007
  • Statement of problem: Main consideration was given to the stresses at the site of implant entry into the cortical bone at the alveolar crest. As a suspectible factor affecting the occurrence of stress concentrations, the contact angle between the implant and the alveolar crest bone was addressed. Purpose: The purpose of this study is to evaluate angles between the alveolar crest bone and the implant effect on the implant crestal area induced stresses using a finite element method. Material and methods: Cylindrically shaped, standard size ITI implants entering into alveolar crest with four different contact angles of 0, 15, 30, and 45 deg. with the long axis of the implant were axisymmetrically modelled. Alterations of stresses around the implants were computed and compared at the cervical cortical bone. Results and conclusion: The results demonstrated that regardless of the difference of the implant/alveolar crest bone contact angles, stress concentration occurred at the cervical bone and the angle differences led to insignificant variations in stress level.

Effect of bone-implant contact pattern on bone strain distribution: finite element method study (골-임플란트 접촉 양상에 따른 골 변형 연구: 유한요소법적 연구)

  • Yoo, Dong-Ki;Kim, Seong-Kyun;Koak, Jai-Young;Kim, Jin-Heum;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.3
    • /
    • pp.214-221
    • /
    • 2011
  • Purpose: To date most of finite element analysis assumed the presence of 100% contact between bone and implant, which is inconsistent with clinical reality. In human retrieval study bone-implant contact (BIC) ratio ranged from 20 to 80%. The objective of this study was to explore the influence of bone-implant contact pattern on bone of the interface using nonlinear 3-dimensional finite element analysis. Materials and methods: A computer tomography-based finite element models with two types of implant (Mark III Br${\aa}$nemark$^{(R)}$, Inplant$^{(R)}$) which placed in the maxillary 2nd premolar area were constructed. Two different degrees of bone-implant contact ratio (40, 70%) each implant design were simulated. 5 finite element models were constructed each bone-implant contact ratio and implant design, and sum of models was 40. The position of bone-implant contact was determined according to random shuffle method. Elements of bone-implant contact in group W (wholly randomized osseointegration) was randomly selected in terms of total implant length including cortical and cancellous bone, while ones in group S (segmentally randomized osseointegration) was randomly selected each 0.75 mm vertically and horizontally. Results: Maximum von Mises strain between group W and group S was not significantly different regardless of bone-implant contact ratio and implant design (P=.939). Peak von Mises strain of 40% BIC was significantly lower than one of 70% BIC (P=.007). There was no significant difference between Mark III Br${\aa}$nemark$^{(R)}$ and Inplant$^{(R)}$ in 40% BIC, while average of peak von Mises strain for Inplant$^{(R)}$ was significantly lower ($4886{\pm}1034\;{\mu}m/m$) compared with MK III Br${\aa}$nemark$^{(R)}$ ($7134{\pm}1232\;{\mu}m/m$) in BIC 70% (P<.0001). Conclusion: Assuming bone-implant contact in finite element method, whether the contact elements in bone were wholly randomly or segmentally randomly selected using random shuffle method, both methods could be effective to be no significant difference regardless of sample size.

THREE DIMENSIONAL FINITE ELEMENT ANALYSIS ON THE MINIMUM CONTACT FRACTION OF BONE-IMPLANT INTERFACE (골조직과 임플랜트 계면의 최소접촉분율에 관한 삼차원 유한요소분석적 연구)

  • Jang, Kyoung-Soo;Kim, Yung-Soo;Kim, Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.4
    • /
    • pp.627-646
    • /
    • 1997
  • In order to find the degree of osseointegration at bone-implant interface of clinically successful implants, models including the 3.75mm wide, 10mm long screw type $Br{\aa}nemark$ implant as a standard and cylinder, 15mm long, 5.0mm wide, two splinted implants, and implants installed in various cancellous bone density were designed. Also, the amount of load and material of prostheses were changed. The stress and minimum contact fraction were analyzed on each model using three-dimensional finite element method(I-DEAS and ABAQUS version 5.5). The results of this study were as follows. 1. 10mm long, 3.75mm diameter-screw type implant had $36.5{\sim}43.7%$ of minimum contact fraction. 2. Cylinder type implant showed inferior stress distribution and higher minimum contact fraction than screw type. 3. As implant length was increased, minimum contact fraction was increased a little, however, maximum principal stress was decreased. 4. Implants with a large diameter had lower stress value with slightly higher minimum contact fraction than standard screw type. 5. Two splinted implants showed no change of minimum contact fraction. 6. The higher bone density, the lower stress value. 7. The material of occlusal surface had no effect on the stress of the bone-implant interface.

  • PDF

Bone Healing around Screw - shaped Titanium Implants with Three Different Surface Topographies (임플란트의 표면처리 유형에 따른 골 치유 양상)

  • Koh, Young-Han;Kim, Young-Jun;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.41-57
    • /
    • 2001
  • It is well known that the apposition of bone at implant surface would be influenced by the microstructure of titanium implants. The purpose of this study was to compare bone healing around the screw-shaped titanium implant with three different surface topographies in the canine mandibles by histological and biomechanical evaluation. All mandibular premolars of six mongrel dogs were extracted and implants were placed one month later. The pure titanium implants had different surface topographies: smooth and machined ($Steri-OSS^{(R)}$: Group II); sandblasted and acid-etched ($ITI^{(R)}$, SLA: Group III) surface. The fluorescent dyes were injected on the 2nd (calcein), 4th (oxytetracycline HCI) and 12th (alizarin red) weeks of healing. Dogs were sacrificed at 4 and 12 weeks after implantation. The decalcified and undecalcified specimens were prepared for histological and histo-metrical evaluation of implant-bone contact. Some specimens at 12 weeks after implantation were used for removal torque testing. Histologically, direct bone apposition to implant surface was found in all of the treated groups. More mature and dense bone was observed at the implant-bone interface at 12 weeks than that at 4 weeks after implantation. Under the fluorescent microscope, thick regular green fluorescent lines which mean early bone apposition were observed at the implant-bone interface in Group III, while yellow and red fluorescent areas were found at the implant-bone interface in Group I and II. The average implant-bone contact ratios at 4 weeks of healing were 54.3% in Group I, 57.7% in Group II and 66.2% in Group III. In Group I, implant-bone contact ratio was significantly lower than Group II and III(p<0.05). The average implant-to-bone contact ratios at 12 weeks after implantation were 64.3% in Group I, 66.7% in Group II and 71.2% in Group III. There was no significant difference among the three groups. In Group I and II, the implant-bone contact ratio at 12 weeks increased significantly in comparison to ratio at 4 weeks(p<0.05). The removal torque values at 12 weeks after implantation were 90.9 Ncm in Group I, 81.6 Ncm in Group II and 77.1 Ncm in Group III, which were significantly different(p<0.05). These results suggest that bone healing begin earlier and be better around the surface-treated implants compared to the smooth surface implants. The sandblasted and acid-etched implants showed the most favorable bone response among the three groups during the early healing stage and could reduce the waiting period prior to implant loading.

  • PDF

Bone-to-Implant Contact according to the Surface Roughness of the Implants (임플란트의 표면조도가 골융합에 미치는 영향)

  • Choi, Kwi-Hyun;Herr, Yeek;Lee, Man-Sub;Kwon, Young-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.4
    • /
    • pp.717-728
    • /
    • 2003
  • This study was performed to evaluate the difference of the bone-to-implant contact according to the surface roughness of the implants. Two beagles were used in the experiment. Extraction of the all premolars was performed in the mandible. In 3 months of healing, screw-shaped pure titanium machined surface implants (Implantium(R), Dentium Co. Korea), implants blasted with 45${\mu}m$ $TiO_2$ particles, (Implantium(R), Dentium Co. Korea) and implants blasted with 100${\mu}m$ $TiO_2$ particles (Implantium(R), Dentium Co. Korea) in diameter 3.4mm and length 6mm were installed in the edentulous mandible. Each dog was sacrificed at 4, 12 weeks after placement and then nondecalcified specimens were prepared for histologic analysis. The results of this study were as follows. 1. At 4 , 12 weeks after the surgery, bone-to-implant contact in the surface blasted with $TiO_2$ particles was higher than that in the pure titanium machined surface respectively. 2. Osseointegration in the surface blasted with 45${\mu}m$ $TiO_2$ particles was more increased than that in the surface blasted with 100${\mu}m$ $TiO_2$ particles. 3. Bone-to-implant contact was increased with time independent of surface roughness. 4. Bone formation was in the outfolded area more than inside the threads independent of surface roughness. From the above results, we were able t o find the most bone-to-implant contact in 45${\mu}m$ $TiO_2$ blasted implant.

Histological Study on the Interface of Bone and Implant (골과 임플란트 접촉면의 조직학적 연구)

  • Kim, Ju-Sung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.1
    • /
    • pp.35-40
    • /
    • 2005
  • This paper reports the morphological nature of the remodelled interface process between implants and surrounding bone after 1, 4, 6, 8 and 12 weeks of implantation of smooth machined implants into rat tibias. After 4 weeks of implantation, histochemical analysis showed that the new bone was growing in direct contact with the implant. In the forming process, the activatived osteoblast cells migrated toward the interface and colonized the surface at the contact areas. This immature woven bone, rich in osteocyte lacunae, was deposited directly onto the implant surface. Osteoblast activity was found to continue ill 12 weeks of implantation The osteoblasts in lacunar areas developed numerous processes and synthesized bone matrix, after all, surrounded by secreting matrix. At the 12th week, the amount of newly formed bone matrix between bone and implant increased in mineralization. The mineralized mature bone contained well organized collagen fibers with characteristic banding pattern bone tissue formation around the implant.

  • PDF

ON THE BONE TISSUE REACTION TO IMPLANTS WITH DIFFERENT SURFACE TREATMENT METHODS (임플랜트 표면 처리 방법에 따른 골조직 반응에 대한 연구)

  • Kim, Yong-Jae;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.71-84
    • /
    • 2007
  • Statement of problem: Implant surface characteristics plays an important role in clinical success and many studies have been made for improvement of success by changing surface roughness. Purpose: Appropriate increase of surface roughness increases the activity of osteoblast and enhance contact and retention between bone and implant. Material and method- Machined, SLA and RBM surface implants, which are the most commonly used implants were implanted into the tibia of rabbits and after 1 week, 4 weeks, 8 weeks and 12 weeks there were histologic and histomorphometric analysis and study for bone gradient and change of Ca/P ratio using EDS(Energy Dispersive X-ray Spectroscope). Results: Comparison of bone-implant contact showed no significant difference among each implant. In comparison of bone area rates, SLA showed higher value with significant difference at 1 week and 4 weeks, and SLA and RBM at 8 weeks than Machined implant (p<0.05). In analysis of bone constituents with EDS, titanium was specifically detected in new bones and the rates were constant by surface treatment method or period. In case of Ca/P ratio, according to surface treatment method, each group showed significant difference. Lots of old bone fragments produced during implantation remained on the rough surface of RBM implant surface and each group showed histological finding with active synthesis of collagen fibers until 12 weeks. In transmission electronic microscopic examination of sample slice after elapse of twelve weeks, tens nm of borderline (lamina limitans like dense line)was seen to contact the bone, on the interface between bone and implant. Conclusion: SLA and RBM implant with rough surface shows better histomorphometrical result and the trend of prolonged bone formation and maturation in comparison with Machined implant. In addition, implant with rough surface seems to be helpful in early stage bone formation due to remaining of old bone fragments produced in implantation. From the results above, it is considered to be better to use implant with rough surface in implantation.

Bone healing dynamics associated with 3 implants with different surfaces: histologic and histomorphometric analyses in dogs

  • Lee, Jungwon;Yoo, Jung Min;Amara, Heithem Ben;Lee, Yong-Moo;Lim, Young-Jun;Kim, Haeyoung;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.1
    • /
    • pp.25-38
    • /
    • 2019
  • Purpose: This study evaluated differences in bone healing and remodeling among 3 implants with different surfaces: sandblasting and large-grit acid etching (SLA; IS-III $Active^{(R)}$), SLA with hydroxyapatite nanocoating (IS-III $Bioactive^{(R)}$), and SLA stored in sodium chloride solution ($SLActive^{(R)}$). Methods: The mandibular second, third, and fourth premolars of 9 dogs were extracted. After 4 weeks, 9 dogs with edentulous alveolar ridges underwent surgical placement of 3 implants bilaterally and were allowed to heal for 2, 4, or 12 weeks. Histologic and histomorphometric analyses were performed on 54 stained slides based on the following parameters: vertical marginal bone loss at the buccal and lingual aspects of the implant (b-MBL and l-MBL, respectively), mineralized bone-to-implant contact (mBIC), osteoid-to-implant contact (OIC), total bone-to-implant contact (tBIC), mineralized bone area fraction occupied (mBAFO), osteoid area fraction occupied (OAFO), and total bone area fraction occupied (tBAFO) in the threads of the region of interest. Two-way analysis of variance (3 types of implant $surface{\times}3$ healing time periods) and additional analyses for simple effects were performed. Results: Statistically significant differences were observed across the implant surfaces for OIC, mBIC, tBIC, OAFO, and tBAFO. Statistically significant differences were observed over time for l-MBL, mBIC, tBIC, mBAFO, and tBAFO. In addition, an interaction effect between the implant surface and the healing time period was observed for mBIC, tBIC, and mBAFO. Conclusions: Our results suggest that implant surface wettability facilitates bone healing dynamics, which could be attributed to the improvement of early osseointegration. In addition, osteoblasts might become more activated with the use of HA-coated surface implants than with hydrophobic surface implants in the remodeling phase.