• 제목/요약/키워드: Bone Formation Markers

검색결과 77건 처리시간 0.021초

이소플라본 섭취수준이 성장기 암컷 쥐의 골대사지표 및 골대사관련호르몬에 미치는 영향 (The Effects of Isoflavones Intake Level on Bone Markers and Bone Related Hormones in Growing Female Rats)

  • 최미자;정윤정
    • Journal of Nutrition and Health
    • /
    • 제41권3호
    • /
    • pp.199-205
    • /
    • 2008
  • 성장기 암컷 쥐를 대상으로 이소플라본 섭취수준에 따라 골대사 지표 및 골대사 관련 호르몬에 미치는 영향을 알아 보기 위해 실시한 연구 결과를 요약하면 다음과 같다. 1) 체중증가량과 식이섭취량, 식이효율은 이소플라본의 섭취수준에 따라 실험군간에 유의적인 차이가 없었다. 2) 골형성 지표인 혈청 ALP, osteocalcin은 이소플라본 섭취수준에 따라 실험군간에 유의적인 차이는 없었다. 3) 골흡수 지표인 DPD crosslink value도 이소플라본 섭취수준에 따라 실험군간에 유의적인 차이는 없었다. 4) 혈청 에스트로겐 농도, 부갑상선 호르몬과 인슐린유사 성장인자-I 농도는 이소플라본 섭취수준에 따라 유의적인 차이가 없었다. 5) 칼시토닌농도는 1IF군과 1/2IF군 보다 1IF군이 골형성과 골흡수에 유리한 경향을 나타내었고 칼시토닌과 성장호르몬이 유의적으로 증가하여 장기적으로는 골대사에 더 유리한 영향을 미칠 것으로 사료된다.

Static magnetic fields promote osteoblastic/cementoblastic differentiation in osteoblasts, cementoblasts, and periodontal ligament cells

  • Kim, Eun-Cheol;Park, Jaesuh;Kwon, Il Keun;Lee, Suk-Won;Park, Su-Jung;Ahn, Su-Jin
    • Journal of Periodontal and Implant Science
    • /
    • 제47권5호
    • /
    • pp.273-291
    • /
    • 2017
  • Purpose: Although static magnetic fields (SMFs) have been used in dental prostheses and osseointegrated implants, their biological effects on osteoblastic and cementoblastic differentiation in cells involved in periodontal regeneration remain unknown. This study was undertaken to investigate the effects of SMFs (15 mT) on the osteoblastic and cementoblastic differentiation of human osteoblasts, periodontal ligament cells (PDLCs), and cementoblasts, and to explore the possible mechanisms underlying these effects. Methods: Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity, mineralized nodule formation based on Alizarin red staining, calcium content, and the expression of marker mRNAs assessed by reverse transcription polymerase chain reaction (RT-PCR). Signaling pathways were analyzed by western blotting and immunocytochemistry. Results: The activities of the early marker ALP and the late markers matrix mineralization and calcium content, as well as osteoblast- and cementoblast-specific gene expression in osteoblasts, PDLCs, and cementoblasts were enhanced. SMFs upregulated the expression of Wnt proteins, and increased the phosphorylation of glycogen synthase $kinase-3{\beta}$ ($GSK-3{\beta}$) and total ${\beta}-catenin$ protein expression. Furthermore, p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK), and nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) pathways were activated. Conclusions: SMF treatment enhanced osteoblastic and/or cementoblastic differentiation in osteoblasts, cementoblasts, and PDLCs. These findings provide a molecular basis for the beneficial osteogenic and/or cementogenic effect of SMFs, which could have potential in stimulating bone or cementum formation during bone regeneration and in patients with periodontal disease.

Ginsenoside Rg2 inhibits osteoclastogenesis by downregulating the NFATc1, c-Fos, and MAPK pathways

  • Sung-Hoon Lee;Shin-Young Park;Jung Ha Kim;Nacksung Kim;Junwon Lee
    • BMB Reports
    • /
    • 제56권10호
    • /
    • pp.551-556
    • /
    • 2023
  • Ginsenosides, among the most active components of ginseng, exhibit several therapeutic effects against cancer, diabetes, and other metabolic diseases. However, the molecular mechanism underlying the anti-osteoporotic activity of ginsenoside Rg2, a major ginsenoside, has not been clearly elucidated. This study aimed to determine the effects of ginsenoside Rg2 on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. Results indicate that ginsenoside Rg2 inhibits RANKL-induced osteoclast differentiation of bone marrow macrophages (BMMs) without cytotoxicity. Pretreatment with ginsenoside Rg2 significantly reduced the RANKL-induced gene expression of c-fos and nuclear factor of activated T-cells (Nfatc1), as well as osteoclast-specific markers tartrate-resistant acid phosphatase (TRAP, Acp5) and osteoclast-associated receptor (Oscar). Moreover, RANKL-induced phosphorylation of mitogen-activated protein kinases (MAPKs) was decreased by ginsenoside Rg2 in BMM. Therefore, we suggest that ginsenoside Rg2 suppresses RANKL-induced osteoclast differentiation through the regulation of MAPK signaling-mediated osteoclast markers and could be developed as a therapeutic drug for the prevention and treatment of osteoporosis.

성견 치계줄기세포 및 골수줄기세포 특성에 관한 연구 (Investigation of postnatal stem cells from canine dental tissue and bone marrow)

  • 진민주;김영성;김수환;김경화;이철우;구기태;김태일;설양조;구영;류인철;정종평;이용무
    • Journal of Periodontal and Implant Science
    • /
    • 제39권2호
    • /
    • pp.119-128
    • /
    • 2009
  • Purpose: The aim of this study was to evaluate the stemness of cells from canine dental tissues and bone marrow. Methods: Canine periodontal ligament stem cells (PDLSC), alveolar bone stem cells (ABSC) and bone marrow stem cells(BMSC) were isolated and cultured. Cell differentiations (osteogenic, adipogenic and chondrogenic) and surface antigens (CD146, STRO-1, CD44, CD90, CD45, CD34) were evaluated in vitro. The cells were transplanted into the subcutaneous space of nude mice to assess capacity for ectopic bone formation at 8 weeks after implantation. Results: PDLSC, ABSC and BMSC differentiated into osteoblasts, adipocytes and chondrocytes under defined condition. The cells expressed the mesenchymal stem cell markers differently. When transplanted into athymic nude mice, these three kinds of cells with hydroxyapatite /${\beta}$- tricalcium phosphate (HA/TCP) carrier showed ectopic bone formation. Conclusions: This study demonstrated that canine dental stem cells have stemness like bone marrow stem cells. Transplantation of these cells might be used as a therapeutic approach for dental stem cell-mediated periodontal tissue regeneration.

녹용 추출물에 의한 MC3T3세포의 분화 촉진 (The Effects of Deer(Cervus nippon) Antler Extracts on Differentiation of MC3T3 Cells)

  • 유윤정;이현정;임소형;강정화;이은희;옥승호;최봉규;전길자
    • Journal of Periodontal and Implant Science
    • /
    • 제30권4호
    • /
    • pp.885-894
    • /
    • 2000
  • Deer antler has been widely prescribed in Chinese and Korean pharmacology. Although there have been several reports concerning the effects of deer antler, such as anti-aging action, anti-inflammatory activity, antifungal action and regulatory activity of the level of glucose, the effect on bone has not determined yet. The purpose of this study was to examine the effect of deer antler on osteoblast differentiation. Hexane extract(CN-H) and chloroform extract(CN-C) were acquired from deer antler(Cervus nippon) and MC3T3-E1 pre-osteoblasts were cultured in the presence or absence of each extract. Osteoblast differentiation was estimated with the formation of mineralized nodules and the mRNA expression of alkaline phosphatase(ALP), osteocalcin(OC) and bone sialoprotein(BSP) which are markers of osteoblast differentiation. Non-treated group did not show mineralized nodule. CN-C or CN-H-treated group showed minerlaized nodules in 16 days. In northern blot analysis, CN-C or CN-H-treated group showed the elevated expression of ALP, BSP and OC in 16 days. These results suggest the possibility to develop deer antler as a bone regenerative agent in periodontal therapy by showing the stimulating activity of deer antler on differentiation of osteoblast.

  • PDF

연교의 파골세포 분화 및 골 흡수 억제 기전 연구 (Forsythiae Fructus Extract Inhibits RANKL-Induced Osteoclast Differentiation and Prevent Bone Loss in OVX-Induced Osteoporosis Rat)

  • 엄지환;김재현;김민선;김상우;신화정;정혁상;손영주
    • Korean Journal of Acupuncture
    • /
    • 제36권2호
    • /
    • pp.115-126
    • /
    • 2019
  • Objectives : Osteoporosis is a condition characterized by low bone mass and increased bone fragility. It has become a major problem of senior citizens. The purpose of this study is to experiment the effect of water extract of Forsythiae Fructus (wFF) on osteoclast differentiation; and the other purpose is to examine the effect of wFF on osteoporosis in ovariectomized rat. Methods : To investigate the effect of wFF on osteoclast differentiation and activity, RAW 264.7 cells were used. The number of TRAP positive cell, TRAP activity, pit area, mRNA expression of makers (RANK, TRAP, CA II, CTK, MMP-9, NFATc1, c-Fos), protein expression of makers (NFATc1, c-Fos) were investigated. For in vivo study, 40 female Sprague-Dawley (SD) rats were induced osteoporosis by ovariectomy (OVX) and then tested for anti-osteoporosis effect by administration of wFF. Results : wFF suppressed osteoclatogenesis, TRAP activity and pit area formation. Moreover, wFF decreased the expression of master differentiation factors (NFATc1, c-Fos) and also reduced the osteoclastogenesis-related markers (TRAP, CA II, CTK, MMP-9). These suggest that wFF inhibit osteoclasts differentiation and bone resorption. In the OVX rat model, wFF inhibited decreasing of BMD and trabecular area. Conclusions : Forsythiae Fructus should be effective for osteoporosis prevention and treatment.

사람의 골수 줄기 세포로부터의 골세포 분화 과정에서 BMP-2가 미치는 영향과 그에 따른 분화 유전자의 발현 비교 연구 (THE EFFECT OF RHBMP-2 IN HUMAN BONE MARROW-DERIVED STEM CELLS AS OSTEOGENIC INDUCERS)

  • 김인숙;장옥련;조태형;이규백;박용두;노인섭;;황순정;김명진;이종호
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제27권1호
    • /
    • pp.16-23
    • /
    • 2005
  • It is commonly acknowledged that bone morphogenic protein (BMP-2) functions as a potential osteogenic inducer in bone formation. Recently, several papers reported that bone marrow-derived stem cell (BMSC) from human is not responsive to BMP-2 in comparison to high capacity of BMP-2 in the osteoinduction of stromal cell derived from bone marrow of rodent animals such as rat or mouse. In this study, we characterized BMSC derived from 11 years old donor for the responsiveness to rhBMP-2, dexamethasone (Dex) and 1,25-dihydroxyvitamin D (vitamin D), in order to analyze their function in the early osteogenesis. The effect of over mentioned agents was evaluated by means of assessing alkaline phosphatase (ALP) activity/staining, RT-PCR analysis and von Kossa staining. In addition, we analyzed the meaning of expressed several osteoblastic markers such as alkaline phosphatase, collagen typeI, osteopontin, bone sialoprotein and osteocalcin with relation to either differentiation or mineralization. Only in the presence of Dex, human BMSC could commit osteoblastic differentiation and matrix mineralization, and either BMP-2 or vitamin D treatment was not able to induce. But BMP-2 or Vitamin D showed potential synergy effect with Dex. ALP and bone sialoprotein were clearly expressed in response of Dex treatment compared to weak expression of osteopontin in early osteogenesis. Therefore, we expect that this study will contribute partly to elucidiating early osteogenesis mechanism in human, but variations among bone marrow donors must be considered through further study.

난소절제 쥐에서 카페인 첨가식이가 골밀도 및 골함량에 미치는 영향 (Effects of Caffeine on Bone Mineral Density and Bone Mineral Content in Ovariectomized Rats)

  • 최미자;이주영
    • Journal of Nutrition and Health
    • /
    • 제41권3호
    • /
    • pp.216-223
    • /
    • 2008
  • 본 연구는 0.03%의 카페인 함유 식이를 폐경모델인 난소절제쥐에서 6주간 섭취시켜 골밀도와 골무기질함량에 미치는 영향을 아래와 같이 요약하였다. 1) 체중증가량은 난소절제군이 Sham군에 비해 유의적으로 높았으며 각 군내에서 카페인 섭취에 따른 차이는 없었다. 2) 혈 중 칼슘 농도는 난소절제군내에서 카페인군이 대조군보다 유의적으로 낮게 나타났다. 3) 혈 중 ALP는 Sham군과 난소절제군 모두에서 카페인 군이 대조군보다 높은 경향을 나타내었다. 혈중 Osteocalcin은 Sham 군과 난소절제군, 그리고 각 군내에서 카페인 섭취여부에 따라 유의적인 차이를 나타내지 않았다. 4) 요 중 칼슘 및 인의 농도, 요 중 Deoxypyridinoline(DPD)와 crosslinks value는 Sham 군과 난소절제군, 그리고 각 군내에서 카페인 섭취여부에 따라 유의적인 차이를 나타내지 않았다. 5) 척추골밀도는 Sham군에 비해 난소절제군이 유의적으로 낮았고, 난소절제군내에서 카페인 첨가군과 대조군간에 차이가 없었다. 6) 대퇴골밀도와 대퇴 골무기질 함량은 Sham군과 난소 절제군 간의 차이는 없었고, 각 군내에서 식이에 따른 차이도 없었다. 따라서 카페인 0.03% caffeine 섭취는 난소절제쥐에서 6주간 섭취 시킨 경우 척추와 대퇴골밀도에 부정적 영향을 미치지 않는 것으로 나타났다.

Effects of 1,25-dihydroxyvitamin D3 on the differentiation of MC3T3-E1 osteoblast-like cells

  • Kim, Hyun-Soo;Zheng, Mingzhen;Kim, Do-Kyung;Lee, Won-Pyo;Yu, Sang-Joun;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • 제48권1호
    • /
    • pp.34-46
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the effects of 1,25-dihydroxyvitamin $D_3$ on the proliferation, differentiation, and matrix mineralization of MC3T3-E1 osteoblast-like cells in vitro. Methods: MC3T3-E1 osteoblastic cells and 1,25-dihydroxyvitamin $D_3$ were prepared. Cytotoxic effects and osteogenic differentiation were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, alkaline phosphatase (ALP) activity assay, ALP staining, alizarin red S staining, and reverse transcription-polymerase chain reaction (RT-PCR) for osteogenic differentiation markers such as ALP, collagen type I (Col-I), osteocalcin (OCN), vitamin D receptor (VDR), and glyceraldehyde 3-phosphate dehydrogenase. Results: The MTT assay showed that 1,25-dihydroxyvitamin $D_3$ did not inhibit cell growth and that the rate of cell proliferation was higher than in the positive control group at all concentrations. ALP activity was also higher than in the positive control group at low concentrations of 1,25-dihydroxyvitamin $D_3$ ($10^{-10}$, $10^{-12}$, and $10^{-14}M$). RT-PCR showed that the gene expression levels of ALP, Col-I, OCN, and vitamin D receptor (VDR) were higher at a low concentration of 1,25-dihydroxyvitamin $D_3$ ($10^{-12}M$). Alizarin red S staining after treatment with 1,25-dihydroxyvitamin $D_3$ ($10^{-12}M$) showed no significant differences in the overall degree of calcification. In contrast to the positive control group, formation of bone nodules was induced in the early stages of cell differentiation. Conclusions: We suggest that 1,25-dihydroxyvitamin $D_3$ positively affects cell differentiation and matrix mineralization. Therefore, it may function as a stimulating factor in osteoblastic bone formation and can be used as an additive in bone regeneration treatment.

The effects of Cudrania tricuspidata extract on bone metabolism in ovariectomized rats

  • Jo, You-Young;Seo, Sang Deog;Kim, Ji-Won;Cho, Hyun-Ji;Chon, Jeong-Woo;Lee, Kwang Gill;Lee, Heui-Sam;Park, Yoo-Kyoung;Kweon, HaeYong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제32권2호
    • /
    • pp.80-89
    • /
    • 2016
  • The effects of Cudrania tricuspidata (CT) extract on markers of osteoporosis were examined in ovariectomized rats. We classified 26 rats into five groups and provided a pellet chow diet and tap water throughout the 27-wk experimental period. During the last 15 wk, we added oral injections to each group as follows: sham-operated (SHAM, n=4) and ovariectomized-control (OVX, n=5) with distilled water, alendronate with 10 mg/kg/d of alendronate sodium (ALEN, n=5), CT (CT100, n=6) with 100 mg/kg/d of CT, and CT (CT300, n=6) with 300 mg/kg/d of CT. After the experimental period, blood, urine, and micro-CT images were assessed. The CT100 and OVX groups did not show any significant differences in urinary n-terminal telopeptide (NTx) (p<0.05 ), but with increases in CT concentration, the NTx level was slightly reduced. Serum osteocalcin was significantly higher in the CT groups than in all other groups (p<0.05 ). Notably, the serum calcium levels of all groups were within the normal range, but urinary calcium levels in the CT groups were significantly lower than the OVX group (p<0.05 ). In addition, the CT groups exhibited higher trabecular BMD than the OVX groups while showing similar BMD to the ALEN group (p<0.05 ). The Tb.Th of the ALEN group was lower than all other groups. Based on the overall analysis of results, CT prevented bone loss by inhibiting bone resorption and enhancing bone formation. Although alendronate showed a similar effect in preventing bone loss, it did so by solely inhibiting bone resorption, and its long-term use reportedly causes paradoxical effects such as hip fractures. Thus, for osteoporosis induced by ovariectomy, we conclude that CT extract is an effective natural treatment without severe side effects.