• Title/Summary/Keyword: Bonds

Search Result 1,626, Processing Time 0.034 seconds

Characterization of aqualysin I structure(a thermophilic alkaline Serine protease) of Thermus aquaticus YT-1 (Thermus aquaticus YT-1의 내열성 프로테아제 aqualysin I의 구조와 특징)

  • Kwon, Suk-Tae
    • Applied Biological Chemistry
    • /
    • v.31 no.3
    • /
    • pp.274-283
    • /
    • 1988
  • Aqualysin I is an alkaline serine protease which is secretet into the culture medium by Thermus aquaticus YT-1, an extreme thermophile. Aqualysin I was purified, and its partial amino acid sequence was determined. The gene encoding aqualysin I was cloned into E. coli using synthetic oligodeoxyribonucleotides as hybridization probes. The nucleotide sequence of the cloned DNA was determined. The primary structure of aqualysin I, deduced from the nucleotide sequenc, agreed with the determid amino acid sequences, including the $NH_2-$ and COOH terminal sequence of the tryptides derived from aqualysin I. Aqualysin I comprised 281 amino acid residues and its molecular mass was determined to be 28350. On alignment of the whole amino acid sequence, aqualysin I showed high sequence homology with the subtilisin type serine protease, and 43% identity with proteinase K, 37-30% with subtilisins and 34% with thermitase. Extremely high sequence identity was observed in the regions containing the active-site residues, corresponding to Asp32, His64 and Ser221 of subtilisin BPN'. Aqualysin I contains two disulfide bonds, Cys67-Cys99 and Cys163-Cys194, and these disulfide bonds seem to contribute to the heat stability of the enzyme. The determined positions of the twe disulfide bonds of aqualysin I agreed with those predicted previously on the basis of computer graphics of the crystallographic data for subtilisin BPN'. Therefore, these findings sugests that the three-dimensional structure of aqualysin I is similar to that of subtilisin BPN' Aqualysin I is produced as a lage precursor, which contains $NH_2-$ and COOH- terminal portions besides the mature protease sequence.

  • PDF

Interfacial Properties of Atomic Layer Deposited Al2O3/AlN Bilayer on GaN

  • Kim, Hogyoung;Kim, Dong Ha;Choi, Byung Joon
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.268-272
    • /
    • 2018
  • An $Al_2O_3/AlN$ bilayer deposited on GaN by atomic layer deposition (ALD) is employed to prepare $Al_2O_3/AlN/GaN$ metal-insulator-semiconductor (MIS) diodes, and their interfacial properties are investigated using X-ray photoelectron spectroscopy (XPS) with sputter etch treatment and current-voltage (I-V) measurements. XPS analyses reveal that the native oxides on the GaN surface are reduced significantly during the early ALD stage, indicating that AlN deposition effectively clelans up the GaN surface. In addition, the suppression of Al-OH bonds is observed through the ALD process. This result may be related to the improved device performance because Al-OH bonds act as interface defects. Finally, temperature dependent I-V analyses show that the barrier height increases and the ideality factor decreases with an increase in temperature, which is associated with the barrier inhomogeneity. A Modified Richardson plot produces the Richardson constant of $A^{**}$ as $30.45Acm^{-2}K^{-2}$, which is similar to the theoretical value of $26.4Acm^{-2}K^{-2}$ for n-GaN. This indicates that the barrier inhomogeneity appropriately explains the forward current transport across the $Au/Al_2O_3/AlN/GaN$ interface.

A Study on the Current Status and the Results of the Equity Crowdfunding Film Project (증권형 크라우드펀딩 영화 프로젝트 현황 및 결과에 관한 연구)

  • Jung, Joo-Young
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.3
    • /
    • pp.179-189
    • /
    • 2020
  • This study analyzes the status and results of equity crowdfunding film projects from 2016 to 2018. The film project is conducted in the form of general corporate bonds and participating bonds, and 41.5% of the total bonds were issued, 9.5 billion won. In addition, a t-test analysis of the movie's the breakeven point and audience numbers showed that statistically significant and the average number of audience members was low. Therefore, this study suggests the following for the sustainable growth of the equity crowdfunding film project. Equity crowdfunding brokers should reinforce the review of the possibility of achieving the breakeven point of the film and the factors affecting the box office in the investment manual, and should also actively attract projects on the big films that are likely to be successful. This study is meaningful in that it analyzes the equity crowdfunding film project, which has not yet been widely studied in Korea, and is expected to provide implications in the subsequent research and system improvement process.

Thermostable Sites and Catalytic Characterization of Xylanase XYNB of Aspergillus niger SCTCC 400264

  • Li, Xin Ran;Xu, Hui;Xie, Jie;Yi, Qiao Fu;Li, Wei;Qiao, Dai Rong;Cao, Yi;Cao, Yu
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.483-488
    • /
    • 2014
  • In order to improve the expression of heat-resistant xylanase XYNB from Aspergillus niger SCTCC 400264, XynB has been cloned into Pichia pastoris secretary vector pPIC9K. The XynB production of recombinant P. pastoris was four times that of E. coli, and the $V_{max}$ and specific activity of XynB reached $2,547.7{\mu}mol/mg$ and 4,757 U/mg, respectively. XynB still had 74% residual enzyme activity after 30 min of heat treatment at $80^{\circ}C$. From the van der Waals force analysis of XYNB (ACN89393 and AAS67299), there is one more oxygen radical in AAS67299 in their catalytic site, indicating that the local cavity is much more free, and it is more optimal for substrate binding, affinity reaction, and proton transfer, etc, and eventually increasing enzyme activity. The H-bonds analysis of XYNB indicated that there are two more H-bonds in the 33rd Ser of XYNB (AAS67299) than in the 33rd Ala(ACN89393 ), and two H-bonds between Ser70 and Asp67.

Synthesis, Crystal Structure and Quantum Chemistry of a Novel Schiff Base N-(2,4-Dinitro-phenyl)-N'-(1-phenyl-ethylidene)-hydrazine

  • Ji, Ning-Ning;Shi, Zhi-Qiang;Zhao, Ren-Gao;Zheng, Ze-Bao;Li, Zhi-Feng
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.881-886
    • /
    • 2010
  • A novel Schiff base N-(2,4-dinitro-phenyl)-N'-(1-phenyl-ethylidene)-hydrazine has been synthesized and structurally characterized by X-ray single crystal diffraction, elemental analysis, IR spectra and UV-vis spectrum. The crystal belongs to monoclinic with space group P21/n. The molecules are connected via intermolecular O-$H{\cdots}O$ hydrogen bonds into 1D infinite chains. The crystal structure is consolidated by the intramolecular N-$H{\cdots}O$ hydrogen bonds. weak intermolecular C-$H{\cdots}O$ hydrogen bonds link the molecules into intriguing 3D framework. Furthermore, Density functional theory (DFT) calculations of the structure, stabilities, orbital energies, composition characteristics of some frontier molecular orbitals and Mulliken charge distributions of the title compound were performed by means of Gaussian 03W package and taking B3LYP/6-31G(d) basis set. The time-dependent DFT calculations have been employed to calculate the electronic spectrum of the title compound, and the UV-vis spectra has been discussed on this basis. The results show that DFT method at B3LYP/6-31G(d) level can well reproduce the structure of the title compound.

Identification of a Mature form and Characterization of Thermostability of a Serine-type Protease from Aquifex pyrophilus

  • Kim, Yun-Kyeong;Choi, In-Geol;Nam, Won-Woo;Yu, Yeon-Gyu
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.493-498
    • /
    • 2000
  • Aquifex pyrophilus, a hyperthermophilic bacterium, has a serine-type protease that is located at the cell wall fraction with a mature size of 43 kDa. Molecular cloning of the protease gene revealed that it has an ORF of 619 amino acids with homologous catalytic site of serine-type proteases [Choi, I.-G., Bang, W.-K., Kim, S.-H., Yu, G. Y., J. Biol. Chem. (1999), Vol. 274, pp. 881-888]. Constructs containing different regions of the protease gene, including a alanine-substituted mutant at the active site serine, were constructed, and the factors affecting the expression level of the cloned protease gene in E. coli were examined. The presence of the C-terminus hydrophobic region of the protease hindered over-expression in E. coli. Also, the proteolytic activity of the expressed protein appeared to toxic to E. coli. An inactive form that deleted both of the N-terminal signal sequence and the C-terminal polar residues was over-expressed in a soluble form, purified to homogeneity, and its thermostability examined. The purified protein showed three disulfide bonds and three free sulfhydryl group. The thermal denaturation temperature of the protein was measured around $90^{\circ}C$ using a differential scanning calorimeter and circular dichroism spectrometry. The disulfide bonds were hardly reduced in the presence of reducing agents, suggesting that these disulfide bonds were located inside of the protein surface.

  • PDF

Study on Surface Chemical Structure and Mechanical Properties of EPDM Rubber with Microwave Irradiation Time

  • Eom, SeoBin;Lee, Sun Young;Park, Sung Han;Lee, Seung Goo
    • Elastomers and Composites
    • /
    • v.53 no.3
    • /
    • pp.124-130
    • /
    • 2018
  • Recently, microwaves have been used for desulfurization because they can selectively dissociate C-S and S-S bonds present in vulcanized rubber. In this study, we investigated the changes in structural and physical properties of EPDM (Ethylene propylene diene monomer) rubber by irradiating it with microwaves for different durations. The surface chemical composition of the irradiated EPDM rubber was analyzed by FT-IR, XPS, and EDS analyses. It was confirmed by XPS that C-S and S-S S2p peak heights greatly decreased when microwave irradiation was performed for more than 5 min. In the EPDM sample irradiated with microwaves for 10 min, the number of S-O bonds significantly increased owing to oxidation. As the microwave irradiation time was increased, SEM images showed cracks and voids on the EPDM surface. The 20% decomposition temperature of the EPDM rubber sample was investigated by TGA, and it was found to be about $435.23^{\circ}C$ for the EPDM rubber irradiated for 10 min. The crosslinking density of the EPDM rubber was determined by measuring the degree of swelling, and the highest value was observed for the E5 sample irradiated for 5 min. The degree of swelling of the E10 sample irradiated for 10 min was lower than that of the E5 sample. These results indicate that when irradiated with microwaves for more than a certain time, desulfurization occurs and the side chain of the EPDM rubber dissociates and forms additional crosslinking bonds.

Effects of Deposition Parameters on the Bonding Structure and Optical Properties of rf Sputtered a-Si$_{1-x}$C$_{x}$: H films (RF 스퍼터링으로 증착된 a-Si$_{1-x}$C$_{x}$: H 박막의 결합구조와 광학적 성질에 미치는 증착변수의 영향)

  • 한승전;권혁상;이혁모
    • Journal of Surface Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.271-281
    • /
    • 1992
  • Amorphous hydrogenated silicon carbide(a-Si1-xCx : H) films have been prepared by the rf sputtering using a silicon target in a gas mixture of Argon and methane with varying methane gas flow rate(fCH) in the range of 1.5 to 3.5 sccm at constant Argon flow rate of 30sccm and rf power in the range of 3 to 6 W/$\textrm{cm}^2$. The effects of methane flow rate and rf power on the structure and optical properties of a-Si1-xCx : H films have been analysed by measuring both the IR absorption spectrum and the UV transmittance for the films. With increasing the methane flow rate, the optical band gap(Eg) of a-Si1-xCx : H films increases gradually from 1.6eV to the maximum value of 2.42eV at rf power of 4 W/$\textrm{cm}^2$, which is due to an increases in C/Si ratio in the films by an significant increase in the number of C-Hn bonds. As the rf power increases, the number of Si-C and Si-Hn bonds increases rapidly with simultaneous reduction in the number of C-Hn bonds, which is associated with an increase in both degree of methane decomposition and sputtering of silicon. The effects of rf power on the Eg of films are considerably influenced by the methane flow rate. At low methane flow rate, the Eg of films decreased from 2.3eV to 1.8eV with the rf power. On the other hand, at high methane flow rate, that of films increased slowly to 2.4eV.

  • PDF

Effect of Oxygen Addition on Residual Stress Formation of Cubic Boron Nitride Thin Films (입방정 질화붕소 박막의 잔류응력 형성에 미치는 산소 첨가 효과)

  • Jang, Hee-Yeon;Park, Jong-Keuk;Lee, Wook-Seong;Baik, Young-Joon;Lim, Dae-Soon;Jeong, Jeung-Hyun
    • Journal of Surface Science and Engineering
    • /
    • v.40 no.2
    • /
    • pp.91-97
    • /
    • 2007
  • In this study we investigated the oxygen effect on the nucleation and its residual stress during unbalanced magnetron sputtering. Up to 0.5% in oxygen flow rate, cubic phase (c-BN) was dominated with extremely small fraction of Hexagonal phase (h-BN) of increasing trend with oxygen concentration, whereas hexagonal phase is dominated beyond 0.75% flow rate. Interestingly, the residual stress in cubic-phase-dominated films was substantially reduced with small amount of oxygen (${\sim}0.5%$) down to a low value comparable to the h-BN case. This may be because oxygen atoms break B-N $sp^3$ bonds and make B-O bonds more favorably, increasing $sp^2$ bonds preference, as revealed by FTIR and NEXAFS. It was confirmed by experimental facts that the threshold bias voltage for nucleation and growth of cubic phase were increased from -55 V to -70 V and from -50 V to -60 V respectively. The reduction of residual stress in O-added c-BN films is seemingly resulting from the microstructure of the films. The oxygen tends to increase slightly the amount of h-BN phase in the grain boundary of c-BN and the soft h-BN phase of 3D network including surrounding nano grains of cubic phase may relax the residual stress of cubic phase.

Intramolecular Disulfide Bonds for Biogenesis of Calcium Homeostasis Modulator 1 Ion Channel Are Dispensable for Voltage-Dependent Activation

  • Kwon, Jae Won;Jeon, Young Keul;Kim, Jinsung;Kim, Sang Jeong;Kim, Sung Joon
    • Molecules and Cells
    • /
    • v.44 no.10
    • /
    • pp.758-769
    • /
    • 2021
  • Calcium homeostasis modulator 1 (CALHM1) is a membrane protein with four transmembrane helices that form an octameric ion channel with voltage-dependent activation. There are four conserved cysteine (Cys) residues in the extracellular domain that form two intramolecular disulfide bonds. We investigated the roles of C42-C127 and C44-C161 in human CALHM1 channel biogenesis and the ionic current (ICALHM1). Replacing Cys with Ser or Ala abolished the membrane trafficking as well as ICALHM1. Immunoblotting analysis revealed dithiothreitol-sensitive multimeric CALHM1, which was markedly reduced in C44S and C161S, but preserved in C42S and C127S. The mixed expression of C42S and wild-type did not show a dominant-negative effect. While the heteromeric assembly of CALHM1 and CALHM3 formed active ion channels, the co-expression of C42S and CALHM3 did not produce functional channels. Despite the critical structural role of the extracellular cysteine residues, a treatment with the membrane-impermeable reducing agent tris(2-carboxyethyl) phosphine (TCEP, 2 mM) did not affect ICALHM1 for up to 30 min. Interestingly, incubation with TCEP (2 mM) for 2-6 h reduced both ICALHM1 and the surface expression of CALHM1 in a time-dependent manner. We propose that the intramolecular disulfide bonds are essential for folding, oligomerization, trafficking and maintenance of CALHM1 in the plasma membrane, but dispensable for the voltage-dependent activation once expressed on the plasma membrane.