Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.5.268

Interfacial Properties of Atomic Layer Deposited Al2O3/AlN Bilayer on GaN  

Kim, Hogyoung (Department of Visual Optics, Seoul National University of Science and Technology(Seoultech))
Kim, Dong Ha (Department of Materials Science and Engineering, Seoul National University of Science and Technology(Seoultech))
Choi, Byung Joon (Department of Materials Science and Engineering, Seoul National University of Science and Technology(Seoultech))
Publication Information
Korean Journal of Materials Research / v.28, no.5, 2018 , pp. 268-272 More about this Journal
Abstract
An $Al_2O_3/AlN$ bilayer deposited on GaN by atomic layer deposition (ALD) is employed to prepare $Al_2O_3/AlN/GaN$ metal-insulator-semiconductor (MIS) diodes, and their interfacial properties are investigated using X-ray photoelectron spectroscopy (XPS) with sputter etch treatment and current-voltage (I-V) measurements. XPS analyses reveal that the native oxides on the GaN surface are reduced significantly during the early ALD stage, indicating that AlN deposition effectively clelans up the GaN surface. In addition, the suppression of Al-OH bonds is observed through the ALD process. This result may be related to the improved device performance because Al-OH bonds act as interface defects. Finally, temperature dependent I-V analyses show that the barrier height increases and the ideality factor decreases with an increase in temperature, which is associated with the barrier inhomogeneity. A Modified Richardson plot produces the Richardson constant of $A^{**}$ as $30.45Acm^{-2}K^{-2}$, which is similar to the theoretical value of $26.4Acm^{-2}K^{-2}$ for n-GaN. This indicates that the barrier inhomogeneity appropriately explains the forward current transport across the $Au/Al_2O_3/AlN/GaN$ interface.
Keywords
$Al_2O_3/AlN$ bilayer; native oxides; Al-OH bonds; barrier inhomogeneity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Strite and H. Morkoc, J. Vac. Sci. Technol., B, 10, 1237 (1992).   DOI
2 S. Pearton, J. Zolper, R. Shul, and F. Ren, J. Appl. Phys., 86, 1 (1999).   DOI
3 K. Chang, C. Cheng, and C. Lang, Solid State Electron., 46, 1399 (2002).   DOI
4 Q. Wang, X. Cheng, L. Zheng, L. Shen, J. Li, D. Zhang, R. Qian, and Y. Yu, RSC Adv., 7, 11745 (2017).   DOI
5 X. Liu, S. Zhao, L. Zhang, H. Huang, J. Shi, C. Zhang, H. Lu, P. Wang, and D. Zhang, Nanoscale Res. Lett., 10, 109 (2015).   DOI
6 X. Lu, J. Ma, Z. Liu, H. Jiang, T. Huang, and K. Lau, Phys. Status Solidi A, 211, 775 (2014).   DOI
7 B. Lakshmi, M. Reddy, A. Kumar, and V. Reddy, Curr. Appl. Phys., 12, 765 (2012).   DOI
8 Y. Chang, H. Chiu,Y. Lee, M. Huang, K. Lee, Y. Chiu, Y. Wang, J. Kwo, and M. Hong, Appl. Phys. Lett., 90, 232904 (2007).   DOI
9 D. Ye, B. Yang, K. Ng, J. Bude, G. Wilk, S. Halder, and J. Hwang, Appl. Phys. Lett., 86, 063501 (2005).   DOI
10 H. Kang, M. Reddy, D. Kim, K. Kim, J. Ha, H. Choi, and J. Lee, J. Phys. D: Appl. Phys., 46, 155101 (2013).   DOI
11 S. Huang, Q. Jiang, S. Yang, Z. Tang, and K. Chen, IEEE Electron Dev. Lett., 34, 193 (2013).   DOI
12 X. Wu, R. Liang, L. Guo, L. Lei, L. Xiao, S. Shen, J. Xu, and J. Wang, Appl. Phys. Lett., 109, 232101 (2016).   DOI
13 H. Kim, D. Kim, and B. Choi, Appl. Phys. A, 123, 800 (2017).   DOI
14 J. Ma, B. Garni, N. Perkins, W. O’Brien, T. Kuech, and M. Lagally, Appl. Phys. Lett., 69, 3351 (1996).   DOI
15 R. Carli and C. Bianchi, Appl. Surf. Sci., 74, 99 (1994).   DOI
16 A. Chanda, S. Verma, and C. Jacob, Bull. Mater. Sci., 30, 561 (2007).   DOI
17 R. Suri, D. Lichtenwalner, and V. Misra, Appl. Phys. Lett., 96, 112905 (2010).   DOI
18 M. Alevli, C. Ozgit, I. Donmez, and N. Biyikli, Phys. Status Solidi A, 209, 266 (2012).   DOI
19 B. Brennan, X. Qin, H. Dong, J. Kim, and R. Wallace, Appl. Phys. Lett., 101, 211604 (2012).   DOI
20 R. Li, Y. Zhao, R. Hou, X. Ren, S. Yuan, Y. Lou, Z. Wang, D. Li, and L. Shi, J. Photochem. Photobiol., A, 319, 62 (2016).
21 L. Rebouta, A. Sousa, M. Andritschky, F. Cerqueira, C. Tavares, P. Santilli, and K. Pischow, Appl. Surf. Sci., 356, 203 (2015).   DOI
22 C. Hinkle, A. Sonnet, F. Vogel, S. McDonnell, G. Hughes, M. Milojevic, B. Lee, F. Aguirre-Tostado, K. Choi, H. Kim, J. Kim, and R. Wallace, Appl. Phys. Lett., 92, 071901 (2008).   DOI
23 W. Wei, Z. Qin, S. Fan, Z. Li, K. Shi, Q. Zhu, and G. Zhang, Nanoscale Res. Lett., 7, 562 (2012).   DOI
24 C. Negrila, M. Lazarescu, C. Logofatu, C. Cotirlan, R. Ghita, F. Frumosu, and L. Trupina, J. Nanomater., 2016, 7574526 (2016).
25 M. Alexander, G. Thompson, and G. Benmson, Surf. Interface Anal., 29, 468 (2000).   DOI
26 R. Tung, Mater. Sci. Eng. R, 35, 1 (2001).   DOI
27 S. Liu, S. Yang, Z. Tang, Q. Jiang, C. Liu, M. Wang, B. Shen, and K. Chen, Appl. Phys. Lett., 106, 051605 (2015).   DOI
28 J. Son, V. Chobpattana, B. McSkimming, and S. Stemmer, J. Vac. Sci. Technol. A, 33, 020602 (2015).
29 S. Ozaki, T. Ohki, M. Kanamura, T. Imada, N. Nakamura, N. Okamoto, T. Miyajima, and T. Kikkawa, CS MANTECH Conf. Apr. 23rd - 26th, 2012, Boston, USA
30 S. Yang, Z. Tang, K. Wong, Y. Lin, C. Liu, Y. Lu, S. Huang, and K. Chen, IEEE Electron Dev. Lett., 34, 1497 (2013).   DOI
31 J. Gao, W. Li, S. Mandal, and S. Chowdhury, Proc. SPIE 10381, Wide Bandgap Power Devices and Applications II, 1038103 (2017).
32 S. Gu, E. Chagarov, J. Min, S. Madisetti, S. Novak, S. Oktyabrsky, A. Kerr, T. Kaufman-Osborn, A. Kummel, and P. Asbeck, Appl. Surf. Sci. 317, 1022 (2014).