• 제목/요약/키워드: Bonding test

검색결과 1,172건 처리시간 0.028초

반도체 패키징용 Gold Bonding Wire의 변형특성 및 해석 (Deformation Properties of Gold Bonding Wire for VLSI Packaging Applications)

  • 김경섭;홍순형
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.250-253
    • /
    • 2001
  • Mechanical properties of gold bonding wire for VLSI packaging have been studied. The diameters of gold wires are about 20-30 micrometer and fracture loads are 8-20 gram force. The elastic modulus, yield strength, fracture strength and elongation properties have been evaluated by micro-tensile test method. This work discusses for an appropriate selection of micro-force testing system and grip design in mim testing. The best method to determine gauge length of wire and to measure tensile properties has been proposed. The mechanical properties such as strength and elastic modulus of current gold bonding wire are higher than pure those of gold wire.

  • PDF

Wire-bonding의 길이 변화에 따른 주파수별 특성 분석 (Analysis of Frequency Response Depending on Wire-bonding Length Variation)

  • 권은진;문종원;류종인;박세훈;김준철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.551-552
    • /
    • 2008
  • This paper presets a results of frequency response in variation of wire bonding length. A gold ball bonding is used as a wire bonding process, and a DPDT(double pole double thru) switch is adapted as a device for test. Wire length is ranged from 442um to 833um and a measured frequency range is from 1 GHz to 6 GHz. Little difference are measured in insertion loss and return loss depending on wire length. Measured S21 and S11 are -0.58 dB and -17.7 dB, respectively. S21 insertion loss is rising up and S11 insertion loss is falling down as the frequency is increased.

  • PDF

Nonlinear finite element analysis of effective CFRP bonding length and strain distribution along concrete-CFRP interface

  • Dogan, Ali Baran;Anil, Ozgur
    • Computers and Concrete
    • /
    • 제7권5호
    • /
    • pp.437-453
    • /
    • 2010
  • CFRP has been widely used for strengthening reinforced concrete members in last decade. The strain transfer mechanism from concrete face to CFRP is a key factor for rigidity, ductility, energy dissipation and failure modes of concrete members. For these reasons, determination of the effective CFRP bonding length is the most crucial step to achieve effective and economical strengthening. In this paper, generalizations are made on effective bonding length by increasing the amount of test data. For this purpose, ANSYS software is employed, and an experimentally verified nonlinear finite element model is prepared. Special contact elements are utilized along the concrete-CFRP strip interface for investigating stress distribution, load-displacement behavior, and effective bonding length. Then results are compared with the experimental results. The finite element model found consistent results with the experimental findings.

접착 보강부재 단부에서의 응력분포에 관한 연구 (Studies on Stress Distribution at the end of the Bonded Strengtening Plate)

  • 김지선;김경원;한만엽;정영수;홍영균
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.129-134
    • /
    • 1996
  • Bonding strength of reinforcing material has been recognized to be the most important factor which determines the strengthening effect and the durability of repair work. The properties of bonding layers affects the stress distribution at the end of the plate, therefore the behavior of bonding layer has to be investigated. In this study, the stress distribution at the end of the bonded plate has been tested and compared with Roberts' analysis. Shear stress and vertical normal stress at the end of strengtening plate are analysized and the effedts of bonding layer thickness, plate thickness and plate length on the bonding behavior are tested. The test results showed that thickness is one of the most important factor, which is the thinner the thickness, the smaller the maximum stress.

  • PDF

반턱 고무 아스팔트 칼라 시트를 이용한 접합부 맞춤식 옥상 노출 방수공법에 관한 실험적 연구 (An Experimental Study on the Roof Exposure Waterproofing Method of Tenon Jointing Type used Shiplap Rubberized Asphalt Color Sheet)

  • 이정훈;이선규;곽효야;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 춘계 학술논문 발표대회
    • /
    • pp.73-77
    • /
    • 2008
  • In this study, we would like to study on the application of roof exposure waterproofing method of joint stability through shiplap rubberized asphalt color sheet to complement problem of fracture, exfoliation and water leakage by existing roof exposure sheet waterproofing material joint weakness. Accordingly, examined basis performance and stability for joint that shiplap rubberized asphalt color sheet through test of that tensile strength, bonding strength, water permeability after bonding, peel resistance after bonding, lengthen resistance after bonding and hang resistance after bonding. The results of this study, waterproofing method to using shiplap rubberized asphalt color sheet is judged to solved fracture, exfoliation and water leakage problems happened in joint by problem was joint of exposure sheet by minimizing gap of joint being integration by shiplap.

  • PDF

Ti-6Al-4V합금의 고상 확산접합에 관한 연구 (A Study on the Solid State Diffusion Bonding of Ti-6Al-4V Alloy)

  • 강호정;강춘식
    • Journal of Welding and Joining
    • /
    • 제15권6호
    • /
    • pp.32-40
    • /
    • 1997
  • Solid state diffusion bonding is the joining process performed by creep and diffusion, which is accelerated by heating below melting temperature and proper pressing, in vacuum or shielding gas atmosphere. By this process we can obtain sufficient joint which can't be expected from the fusion welding. For Ti-6Al-4V alloy, the optimum solid state diffusion bonding condition and mechanical properties of the joint were found, and micro void morphology at bond interface was observed by SEM. The results of tensile test showed sufficient joint, whose mechanical properties are similar to that of base metal. 850$^{\circ}$C, 3MPa is considered as the optimum bonding condition. Void morphology at interface is long and flat at the initial stage. As the percentage of bonded area increases, however, small and round voids are found. Variation of void shape can be explained as follows. As for the void shrinkage mechanism, at the initial stage, power law creep is the dominant, but diffusion mechanism is dominant when the percentage of bonded area is increased.

  • PDF

OLED display device의 Line Defect 시험법에 관한 연구 (A Study on OLED display device's line defect test methode)

  • 최영태;조재립
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2009년도 춘계학술대회
    • /
    • pp.523-529
    • /
    • 2009
  • The ACF(Anisotropic Conductive Film) is used for bonding Drive IC and OLED display device panel. If ACF bonding process is problem, a malfunction of line defect can occur. Because electric resistance increase between the panel and drive IC after a period of time, drive IC can not supply enough current to the panel. This paper is studied on a method of test for line defect.

  • PDF

실란 커플링제를 첨가한 발포폴리스티렌 혼입 폴리메타크릴산 메틸 모르타르의 부착특성 (Bonding Properties of PMMA Mortars Using EPS with Silane Coupling Agent)

  • 이철웅;문경주;최낙운;전성환;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.301-304
    • /
    • 2006
  • The purpose of this study is to evaluate bonding properties of PMMA mortars using EPS with silane coupling agent. PMMA mortars are prepared with various silane coupling agent, and tested for flexural strength test, adhesion test in flexure and tensile strength in underwater and air. It is estimated that the application of silane coupling agent to PMMA mortar is more effective in underwater than air.

  • PDF

1.5wt%C 초고탄소 워크롤 제조를 위한 단조 공정 설계: 기공압착 및 접합강도 분석 (Process Design for Manufacturing 1.5wt%C Ultrahigh Carbon Workroll: Void Closure Behavior and Bonding Strength)

  • 임형철;이호원;김병민;강성훈
    • 소성∙가공
    • /
    • 제22권5호
    • /
    • pp.269-274
    • /
    • 2013
  • Experiments and numerical simulations of the incremental upsetting test were carried out to investigate void closure behavior and mechanical characteristic of a 1.5wt%C ultra-high carbon steel. The experimental results showed that the voids become quickly smaller as the reduction ratio increases. The simulation results confirmed this behavior and indicated that the voids were completely closed at a reduction ratio of about 40~45% during incremental upsetting. After the completion of the incremental upsetting tests, the process of diffusion bonding was employed to heal the closed voids in the deformed specimens. To check the appropriate temperature for diffusion bonding, deformed specimens were kept at 800, 900, 1000 and $1100^{\circ}C$ for an hour. In order to investigate the effect of holding time for diffusion bonding at $1100^{\circ}C$, specimens were kept at 10, 20, 30, 40, 50 and 60minutes in the furnace. A distinction between closed and healed voids was clearly established using microstructural observations. In addition, subsequent tensile tests demonstrated that complete healing of a closed void was achieved for diffusion bonding temperatures in the range $900{\sim}1100^{\circ}C$ with a holding time larger than 1 hour.

New technique for strengthening reinforced concrete beams with composite bonding steel plates

  • Yang, Su-hang;Cao, Shuang-yin;Gu, Rui-nan
    • Steel and Composite Structures
    • /
    • 제19권3호
    • /
    • pp.735-757
    • /
    • 2015
  • Composite bonding steel plate (CBSP) is a newly developed type of structure strengthened technique applicable to the existing RC beam. This composite structure is applicable to strengthening the existing beam bearing high load. The strengthened beam consists of two layers of epoxy bonding prestressed steel plates and the RC beam sandwiched in between. The bonding enclosed and prestressed U-shaped steel jackets are applied at the beam sides. This technique is adopted in case of structures with high longitudinal reinforcing bar ratio and impracticable unloading. The prestress can be generated on the strengthening steel plates and jackets by using the CBSP technique before loading. The test results of full-scale CBSP strengthened beams show that the strength and stiffness are enhanced without reduction of their ductility. It is demonstrated that the strain hysteresis effect can be effectively overcome after prestressing on the steel plates by using such technique. The applied plates and jackets can jointly behave together with the existing beam under the action of epoxy bonding and the mechanical anchorage of the steel jackets. The simplified formulas are proposed to calculate the prestress and the ultimate capacities of strengthened beams. The accuracy of formulas was verified with the experimental results.