• Title/Summary/Keyword: Bonding efficiency

Search Result 198, Processing Time 0.022 seconds

Thermal and mechanical properties of C/SiC composites fabricated by liquid silicon infiltration with nitric acid surface-treated carbon fibers

  • Choi, Jae Hyung;Kim, Seyoung;Kim, Soo-hyun;Han, In-sub;Seong, Young-hoon;Bang, Hyung Joon
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.48-53
    • /
    • 2019
  • Carbon fiber reinforced SiC composites (C/SiC) have high-temperature stability and excellent thermal shock resistance, and are currently being applied in extreme environments, for example, as aerospace propulsion parts or in high-performance brake systems. However, their low thermal conductivity, compared to metallic materials, are an obstacle to energy efficiency improvements via utilization of regenerative cooling systems. In order to solve this problem, the present study investigated the bonding strength between carbon fiber and matrix material within ceramic matrix composite (CMC) materials, demonstrating the relation between the microstructure and bonding, and showing that the mechanical properties and thermal conductivity may be improved by treatment of the carbon fibers. When fiber surface was treated with a nitric acid solution, the observed segment crack areas within the subsequently generated CMC increased from 6 to 10%; moreover, it was possible to enhance the thermal conductivity from 10.5 to 14 W/m·K, via the same approach. However, fiber surface treatment tends to cause mechanical damage of the final composite material by fiber etching.

Artificial Intelligence Semiconductor and Packaging Technology Trend (인공지능 반도체 및 패키징 기술 동향)

  • Hee Ju Kim;Jae Pil Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.11-19
    • /
    • 2023
  • Recently with the rapid advancement of artificial intelligence (AI) technologies such as Chat GPT, AI semiconductors have become important. AI technologies require the ability to process large volumes of data quickly, as they perform tasks such as big data processing, deep learning, and algorithms. However, AI semiconductors encounter challenges with excessive power consumption and data bottlenecks during the processing of large-scale data. Thus, the latest packaging technologies are required for AI semiconductor computations. In this study, the authors have described packaging technologies applicable to AI semiconductors, including interposers, Through-Silicon-Via (TSV), bumping, Chiplet, and hybrid bonding. These technologies are expected to contribute to enhance the power efficiency and processing speed of AI semiconductors.

Improving Catalytic Efficiency and Changing Substrate Spectrum for Asymmetric Biocatalytic Reductive Amination

  • Jiang, Wei;Wang, Yali
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.146-154
    • /
    • 2020
  • With the advantages of biocatalytic method, enzymes have been excavated for the synthesis of chiral amino acids by the reductive amination of ketones, offering a promising way of producing pharmaceutical intermediates. In this work, a robust phenylalanine dehydrogenase (PheDH) with wide substrate spectrum and high catalytic efficiency was constructed through rational design and active-site-targeted, site-specific mutagenesis by using the parent enzyme from Bacillus halodurans. Active sites with bonding substrate and amino acid residues surrounding the substrate binding pocket, 49L-50G-51G, 74M,77K, 122G-123T-124D-125M, 275N, 305L and 308V of the PheDH, were identified. Noticeably, the new mutant PheDH (E113D-N276L) showed approximately 6.06-fold increment of kcat/Km in the oxidative deamination and more than 1.58-fold in the reductive amination compared to that of the wide type. Meanwhile, the PheDHs exhibit high capacity of accepting benzylic and aliphatic ketone substrates. The broad specificity, high catalytic efficiency and selectivity, along with excellent thermal stability, render these broad-spectrum enzymes ideal targets for further development with potential diagnostic reagent and pharmaceutical compounds applications.

A Study on the Removal of Heavy Metals by Microorganism in the Biological Wastewater Treatment (생물학적 폐수처리 공정에서의 미생물에 의한 중금속 제거에 관한 연구)

  • Choung, Youn Kyoo;Min, Byeong Heon;Park, Joon Hwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.137-145
    • /
    • 1990
  • In this research, biological uptake of heavy metals(Cd(II), Cu(II), Zn(II)) was measured under various conditions ; pH, initial heavy metal concentration, temperature, contact time and the amount of biomass through batch test. From this research, it was found that heavy metals might be removed through adsorption and accumulation in activated sludge process. Heavy metals were highly concentrated by microbial floc in activated sludge. Also, the removal efficiency was reached up to 80~90% within and after 1 hour the increase of removal efficiency was minimal. The order of accumulation efficiency was Cu(II)>Zn(II)>Cd(II), and the bonding strength between heavy metals and microbial floc may be expressed in order of Cu(II)>Zn(II)>Cd(II).

  • PDF

Characteristics of Perovskite Solar Cell with Nano-Structured MoO3 Hole Transfer Layer Prepared by Hydrothermal Synthesis (수열합성법으로 제막한 MoO3 나노 구조체를 정공수송층으로 갖는 페로브스카이트 태양전지 특성분석)

  • Song, Jae-Kwan;Ahn, Joon-Sub;Han, Eun-Mi
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.81-86
    • /
    • 2020
  • MoO3 metal oxide nanostructure was formed by hydrothermal synthesis, and a perovskite solar cell with an MoO3 hole transfer layer was fabricated and evaluated. The characteristics of the MoO3 thin film were analyzed according to the change of hydrothermal synthesis temperature in the range of 100 ℃ to 200 ℃ and mass ratio of AMT : nitric acid of 1 : 3 ~ 15 wt%. The influence on the photoelectric conversion efficiency of the solar cell was evaluated. Nanorod-shaped MoO3 thin films were formed in the temperature range of 150 ℃ to 200 ℃, and the chemical bonding and crystal structure of the thin films were analyzed. As the amount of nitric acid added increased, the thickness of the thin film decreased. As the thickness of the hole transfer layer decreased, the photoelectric conversion efficiency of the perovskite solar cell improved. The maximum photoelectric conversion efficiency of the perovskite solar cell having an MoO3 thin film was 4.69 % when the conditions of hydrothermal synthesis were 150 ℃ and mass ratio of AMT : nitric acid of 1 : 12 wt%.

Study on the Efficiency in Silocin Solar Cell (실리콘 태양전지 셀 효율에 관한 연구)

  • Hyun, Il-Seoup;Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2565-2569
    • /
    • 2010
  • It was researched the correlation between the Solar cell and the effect of texturing. The samples were textured by using the IPA mixed solution with $HNO_3$, KOH and NaOH. The samples were analyzed by the X-ray Diffraction pattern and Fourier Transform Infrared spectroscopy. The FTIR spectra in the range of 950~1350 $cm^{-1}$ was related to the peak's formation as the bonding structure. The split of peaks means that the inter reaction between the molecular did not activate and then increased the efficiency because of low reflectance as shown the cell treated in NaOH mixed solution.

A Brief Study on the Fabrication of III-V/Si Based Tandem Solar Cells

  • Panchanan, Swagata;Dutta, Subhajit;Mallem, Kumar;Sanyal, Simpy;Park, Jinjoo;Ju, Minkyu;Cho, Young Hyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.4
    • /
    • pp.109-118
    • /
    • 2018
  • Silicon (Si) solar cells are the most successful technology which are ruling the present photovoltaic (PV) market. In that essence, multijunction (MJ) solar cells provided a new path to improve the state-of-art efficiencies. There are so many hurdles to grow the MJ III-V materials on Si substrate as Si with other materials often demands similar qualities, so it is needed to realize the prospective of Si tandem solar cells. However, Si tandem solar cells with MJ III-V materials have shown the maximum efficiency of 30 %. This work reviews the development of the III-V/Si solar cells with the synopsis of various growth mechanisms i.e hetero-epitaxy, wafer bonding and mechanical stacking of III-V materials on Si substrate. Theoretical approaches to design efficient tandem cell with an analysis of state-of-art silicon solar cells, sensitivity, difficulties and their probable solutions are discussed in this work. An analytical model which yields the practical efficiency values to design the high efficiency III-V/Si solar cells is described briefly.

Design of Electrode Structure for Reducing Ag Paste for Shingled PV Module Application (Shingled PV 모듈 적용을 위한 Ag Paste 저감 전극 구조 설계)

  • Oh, Won Je;Park, Ji Su;Lee, Jae Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.267-271
    • /
    • 2019
  • A shingled PV module is manufactured by dividing and bonding. In this method, the solar cell is divided by lasers and bonded using electrically conductive adhesives (ECAs). Consequently, the manufacturing cost increases because a process step is added. Therefore, we aim to reduce the production cost by reducing the amount of Ag paste used in the solar cell front. Various electrode structures were designed and simulated. The number of fingers was optimized by designing thinner fingers, and the number of fingers with the maximum power conversion efficiency was confirmed. The simulation confirmed the maximum efficiency in the 4-divided electrode pattern. The amount of Ag paste used for each electrode pattern was calculated and analyzed. The number of fingers was optimized by decreasing the width of the finger; this will not only reduce the amount of Ag paste required but also the increase the efficiency.

Avantor® ACE® UltraCore HPLC and UHPLC Columns (Avantor® ACE® UltraCore HPLC/UHPLC 칼럼 가이드)

  • Peter Bridge;Ian Phillips;Gemma Lo;Cassandra Rusher
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.4.1-4.15
    • /
    • 2024
  • The Avantor® ACE® UltraCore series encompasses High Performance Liquid Chromatography (HPLC) and Ultra High Performance Liquid Chromatography (UHPLC) columns designed to deliver high throughput and high-efficiency ultra-fast separations. Utilizing ultra-inert solid-core silica particles with monodisperse particle distribution, these columns combine the high efficiency of UHPLC with the operability of HPLC instrumentation, yielding lower backpressure and high-resolution separations suitable for a broad spectrum of analytes. The Avantor® ACE® UltraCore range includes three primary product types: • UltraCore BIO: Designed for large biomolecules (≥5 kDa), these columns offer exceptional performance in separating biologically derived compounds. • UltraCore: Ideal for standard small organic molecules, providing rapid separations for both synthetic and natural mixtures. • UltraCore Super: Equipped with encapsulated bonding technology for small organic molecules in extreme pH conditions, optimal for high pH buffer requirements. The Avantor® ACE® UltraCore columns present a versatile and high-efficiency solution for chromatographic separation needs, accommodating a wide range of molecular sizes and providing enhanced resolution and reduced analysis time. Their adaptability to both HPLC and UHPLC systems, combined with the advantages of solid-core technology, makes them an invaluable tool in analytical and preparative chromatography.

  • PDF

Fundamental Mechanisms of Platinum Catalyst for Oxygen Reduction Reaction in Fuel Cell: Density Functional Theory Approach (연료전지 산소환원반응 향상 위한 백금 촉매의 구조적 특성: 밀도범함수이론 연구)

  • Kang, Seok Ho;Lee, Chang-Mi;Lim, Dong-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.5
    • /
    • pp.242-248
    • /
    • 2016
  • The overall reaction rate of fuel cell is governed by oxygen reduction reaction (ORR) in the cathode due to its slowest reaction compared to the oxidation of hydrogen in the anode. The ORR efficiency can be readily evaluated by examining the adsorption strength of atomic oxygen on the surface of catalysts (i.e., known as a descriptor) and the adsorption energy can be controlled by transforming the surface geometry of catalysts. In the current study, the effect of the surface geometry of catalysts (i.e., strain effect) on the adsorption strength of atomic oxygen on platinum catalysts was analyzed by using density functional theory (DFT). The optimized lattice constant of Pt ($3.977{\AA}$) was increased and decreased by 1% to apply tensile and compressive strain to the Pt surface. Then the oxygen adsorption strengths on the modified Pt surfaces were compared and the electron charge density of the O-adsorbed Pt surfaces was analyzed. As the interatomic distance increased, the oxygen adsorption strength became stronger and the d-band center of the Pt surface atoms was shifted toward the Fermi level, implying that anti-bonding orbitals were shifted to the conduction band from the valence band (i.e., the anti-bonding between O and Pt was less likely formed). Consequently, enhanced ORR efficiency may be expected if the surface Pt-Pt distance can be reduced by approximately 2~4% compared to the pure Pt owing to the moderately controlled oxygen binding strength for improved ORR.