• Title/Summary/Keyword: Bonding durability

Search Result 116, Processing Time 0.022 seconds

Improvement of Surface Properties of CP-Titanium by Thermo-Chemical Treatment (TCT) Process (열확산처리 공정에 의한 순수 타이타늄의 표면특성 향상 연구)

  • Jeong, Hyeon-Gyeong;Lee, Dong-Geun;Yaskiv, O.;Lee, Yong-Tai;Hur, Bo-Young
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.692-698
    • /
    • 2011
  • The thermo-chemical treatment (TCT) process was applied to achieve surface hardening of CP titanium. The following three different surface modification conditions were tested so that the best surface hardening process could be selected:(a) PVD, (b) TCT+PVD, and (c) TCT+Aging+PVD. These specimens were tested and analyzed in terms of surface roughness, wear, friction coefficient, and the gradient of hardening from the surface of the matrix. The three test conditions were all beneficial to improve the surface hardness of CP titanium. Moreover, the TCT treated specimens, that is, (b) and (c), showed significantly improved surface hardness and low friction coefficients through the thickness up to $100{\mu}m$. This is due to the functionally gradient hardened surface improvement by the diffused interstitial elements. The hardened surface also showed improvement in bonding between the PVD and TCT surface, and this leads to improvement in wear resistance. However, TCT after aging treatment did not show much improvement in surface properties compared to TCT only. For the best surface hardening on CP titanium, TCT+PVD has advantages in surface durability and economics.

An Experimental Study on Mechanical Properties and Failure Behavior of Plywood (Plywood의 기계적 특성 및 파손 거동 분석에 관한 실험적 연구)

  • Cha, Seung-Joo;Kim, Jeong-Dae;Kim, Jeong-Hyeon;Oh, Hoon-Kyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.335-342
    • /
    • 2019
  • The objective of this study is to analyze the mechanical properties of plywood used as a thermal insulating material for LNG CCS (Liquefied Natural Gas, Cargo Containment System). It is created by bonding an odd number of parallel and perpendicular direction for preventing contraction and expansion of wood. Also plywood is widely used as LNG CCS insulating material because of its durability, light weight and high stiffness. Since LNG CCS is loaded with liquid cargo, the impact load by sloshing during operation and the wide temperature range (room temperature, low temperature, cryogenic temperature) exposed during loading, unloading should be considered. The thickness of the plywood which is used for the membrane type MARKIII was selected as the thickness of the test specimen. In this present study, plywood is analyzed by the fracture behavior and mechanical properties of plywood by temperature and grain direction. In addition, it is necessary to analyze the fracture shape and predict the fracture strain by using regression model because the critical load may cause cracks inside the tank, which may affect the leakage of cryogenic liquid.

Study on Peel Strength Measurement of 3D Printing Composite Fabric by Using FDM (FDM 방식을 활용한 3D 프린팅 복합직물의 박리강력 측정 연구)

  • Han, Yoojung;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.23 no.2
    • /
    • pp.77-88
    • /
    • 2019
  • One way of appling 3D printing to garments is through the combination of 3D polymer filaments in textile fabrics. it is essential to understand the interface between the polymer and the 3D composite fabric in order to enhance the adhesion strength between the polymers and the peeling strength between the fabric and the polymer. In this study, the adhesion of composite printed specimens using a combination of fabric and polymers for 3D printing was investigated, and also the change in adhesion was investigated after the composite fabric printed with polymers was subjected to constant pressure. Through this process, the aims to help develop and utilize 3D printing textures by providing basic data to enhance durability of 3D printing composite fabrics. The measure of the peeling strength of the composite fabric prepared by printing on a fabric using PLA, TPU, Nylon polymer was obtained as follows; TPU polymer for 3D printing showed significantly higher peel strength than polymers of composite fabric using PLA and Nylon polymer. In the case of TPU polymer, the adhesive was crosslinked because of the reaction between polyurethane and water on the surface of the fabric, thus increasing the adhesion. It could be observed that the adhesion between the polymer and the fiber is determined more by the mechanical effect rather than by its chemical composition. To achieve efficient bonding of the fibers, it is possible to modify the fiber surface mechanically and chemically, and consider the deposition process in terms of temperature, pressure and build density.

A Study on Fracture Property of Adhesive Interface at Tapered Double Cantilever Beam with Inhomogeneous Composite Material due to Loading Conditions of In-plane and Out-plane (면내 및 면외 하중 조건들에 따른 이종 복합 소재를 가진 경사진 이중외팔보에서의 접착계면의 파괴 특성 연구)

  • Lee, Jung-Ho;Kim, Jae-Won;Cheon, Seong-Sik;Cho, Jae-Ung
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.401-407
    • /
    • 2020
  • At the engineering and industrial areas, the lightweight composite material has been substituted with the metals, such as steel at the structural parts. This composite material has been applied by the adhesive bonding method, as well as the joint methods with rivets, welds or bolts and nuts. The study on the strength characteristics of adhesive interface is necessarily required in order to apply the method to composite materials. CFRP specimens as the fiber reinforced plastic composites were manufactured easily and this study was carried out. The static experiments were performed under the loading conditions of in-plane and out-plane shears with the inhomogeneous composite TDCB specimens with CFRP, aluminum (Al6061), and aluminum foam (Al-foam). Through the result of this study, the durability on the inhomogeneous composite structure with adhesive interface was investigated by examining the fracture characteristic and the point in time.

A Study on the Tetrahedral Amorphous Carbon (ta-C) Coating on Medical Polymer Materials for 3D Printing Artificial Teeth (의료용 폴리머 소재를 활용한 3D 프린팅 인공치아용 사면체 비정질 카본 코팅 기술 연구)

  • Jang, Young-Jun;Kim, Jongkuk;Shin, Chang-Hee;Yu, Sung-Mi
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.255-260
    • /
    • 2022
  • This research presents tetrahedral amorphous (ta-C) coating on the artificial tooth for improving the durability and functionality (esthtics, foreign body of tooth) by filtered cathodic vacuum arc (FCVA). A differentiated coating method is required for a ta-C coating on polymer owing to the low melting point of the polymer, inter-facial adhesion, low friction, and non-conductivity. Herein, ta-C coating is applied below 50℃, and the potential difference of the carbon plasma drawn to the substrate was controlled by applying a positive duct bias voltage without using a substrate bias voltage. Consequently, the ta-C coating with a thickness of 70nm using the duct bias condition of 20V with the highest plasma intensity satisfies the esthetics of the artificial tooth and had a 5B level of inter-facial adhesion. In addition, the composite hardness of ta-C/polymer is 380 MPa, and correlations with esthetics, sp3 bonding, and mechanical properties. The friction coefficient (CoF) of the ta-C coating in a water-lubricated environment is 0.07, showing a six-fold reduction in CoF compared with that of a polymer.

Ag Sintering Die Attach Technology for Wide-bandgap Power Semiconductor Packaging (Wide-bandgap 전력반도체 패키징을 위한 Ag 소결 다이접합 기술)

  • Min-Su Kim;Dongjin Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.1-16
    • /
    • 2023
  • Recently, the shift to next-generation wide-bandgap (WBG) power semiconductor for electric vehicle is accelerated due to the need to improve power conversion efficiency and to overcome the limitation of conventional Si power semiconductor. With the adoption of WBG semiconductor, it is also required that the packaging materials for power modules have high temperature durability. As an alternative to conventional high-temperature Pb-based solder, Ag sintering die attach, which is one of the power module packaging process, is receiving attention. In this study, we will introduce the recent research trends on the Ag sintering die attach process. The effects of sintering parameters on the bonding properties and methodology on the exact physical properties of Ag sintered layer by the realization 3D image are discussed. In addition, trends in thermal shock and power cycle reliability test results for power module are discussed.

Creation of regression analysis for estimation of carbon fiber reinforced polymer-steel bond strength

  • Xiaomei Sun;Xiaolei Dong;Weiling Teng;Lili Wang;Ebrahim Hassankhani
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.509-527
    • /
    • 2024
  • Bonding carbon fiber-reinforced polymer (CFRP) laminates have been extensively employed in the restoration of steel constructions. In addition to the mechanical properties of the CFRP, the bond strength (PU) between the CFRP and steel is often important in the eventual strengthened performance. Nonetheless, the bond behavior of the CFRP-steel (CS) interface is exceedingly complicated, with multiple failure causes, giving the PU challenging to forecast, and the CFRP-enhanced steel structure is unsteady. In just this case, appropriate methods were established by hybridized Random Forests (RF) and support vector regression (SVR) approaches on assembled CS single-shear experiment data to foresee the PU of CS, in which a recently established optimization algorithm named Aquila optimizer (AO) was used to tune the RF and SVR hyperparameters. In summary, the practical novelty of the article lies in its development of a reliable and efficient method for predicting bond strength at the CS interface, which has significant implications for structural rehabilitation, design optimization, risk mitigation, cost savings, and decision support in engineering practice. Moreover, the Fourier Amplitude Sensitivity Test was performed to depict each parameter's impact on the target. The order of parameter importance was tc> Lc > EA > tA > Ec > bc > fc > fA from largest to smallest by 0.9345 > 0.8562 > 0.79354 > 0.7289 > 0.6531 > 0.5718 > 0.4307 > 0.3657. In three training, testing, and all data phases, the superiority of AO - RF with respect to AO - SVR and MARS was obvious. In the training stage, the values of R2 and VAF were slightly similar with a tiny superiority of AO - RF compared to AO - SVR with R2 equal to 0.9977 and VAF equal to 99.772, but large differences with results of MARS.

An Experimental Study on the Fundamental Properties and Durability of Sewer Type Restorative Mortar Spread with Antibiotics (항균제를 도포한 하수시설용 단면복구 모르타르의 기초물성 및 내구특성에 관한 실험적 연구)

  • Kim, Moo-Han;Kim, Gyu-Yong;Kim, Jae-Hwan;Cho, Bong-Suk;Lee, Dong-Heck
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.195-202
    • /
    • 2006
  • Deterioration of sewer concrete is representative that biochemical corrosion according to the $H_2S$ has growth by inhabit sulfur-oxidzing bacteria because of special environment in sewer. But in case of domestic, fundamentally, sulfur-oxidzing bacteria could moderate development of repair material method is need because of corrosion prevent method is inconsideration with carry out to improve project. In this paper, after development of spread type antibiotic with antibio-metal, antibacterial performance about sulfur-oxidzing bacteria of antibiotic and tested to estimate fundamental properties of bonding strength, abrasion contents, contents of water absorption, contents of air permeability, carbonation depth, chloride ion penetration depth and chemical resistance of spread with antibiotic restorative mortar.

Properties and Structures of Bi2O3-B2O3-ZnO Glasses for Application in Plasma Display Panels Rib (PDP Rib용 Bi2O3-B2O3-ZnO계 유리의 물성과 구조)

  • Jin, Young-Hun;Jeon, Young-Wook;Lee, Byung-Chul;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.184-189
    • /
    • 2002
  • This study, compared with data of PbO-base glass system is a part of new glass composition design with Bi-base composition for PDP Rib. As $Bi_2O_3-B_2O_3-ZnO$ glass composition including Bi, which have similar density value and work facility to PbO, properties of softening point, thermal expansion coefficient, chemical durability, dielectric constant, and structural changing by XPS were investigated. $Bi_2O_3-B_2O_3-ZnO$ glass system, added 50∼80 wt% $Bi_2O_3$ widely, were presented 400∼480$^{\circ}C$ softening temperature, $68{\sim}72{\times}10^{-7}/^{\circ}C$ thermal expansion coefficient and 13∼25 dielectric constant. These results were showed similar physical properties with Pb-base glass system of same composition content, application possibility as starting composition of rib material was identified through micro-control of components and physical properties. The bonding energy of $O_{1s}$ as the $Bi_2O_3$ content decreasing was increased and full width at half-maximum (FWHM) was decreased, which is caused by non-bridging oxygen increasing.

Engineering Performance and Applicability of Eco-Friendly Concrete for Artificial Reefs Using Electric Arc Furnace Slags (전기로 슬래그를 활용한 인공리프용 친환경콘크리트의 공학적 성능 및 적용성)

  • Jo, Young-Jin;Choi, Se-Hyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.533-544
    • /
    • 2015
  • Unlike the concrete structure built on land, that exposed to the marine environment is greatly degraded in durability due to the exposure to not only the physical action caused by sea wind, tide, and wave, but also the harsh conditions, including the chemical erosion and freeze-thaw which result from $SO_4{^{2-}}$, $Cl^-$ and $Mg^{2+}$ ions in seawater. In the process of the large scaled construction of submerged concrete structures, of course environmental hazardous substance, such as alkaline (pH) and heavy metals, may be leached. Thus, this issue needs to be adequately reviewed and studied. Therefore, this study attempted to develop a CSA (Calcium Sulfo Aluminate) activator using electric arc furnace reducing slags, as well as the eco-friendly concrete for artificial reefs using electric arc furnace oxidizing slag as aggregate for concrete. The strength properties of the eco-friendly concrete exposed to the marine environment were lower than those of the normal concrete by curing 28 days. This suggest that additional studies are needed to improve the early strength of the eco-friendly concrete. With respect to seawater resistance of the eco-friendly concrete, the average strength loss against 1 year of curing days reached 8-9%. the eco-friendly concrete using high volume of ground granulated blast furnace slags and high specific gravity of electronic arc furnace oxidizing slag demonstrated the sufficient usability as a freeze-thaw resistant material. With respect to heavy metal leaching properties of the eco-friendly concrete, heavy metal substances were immobilized by chemical bonding in the curing process through the hydration of concrete. Thus, heavy metal substances were neither identified at or below environmental hazard criteria nor detected, suggesting that the eco-friendly concrete is safe in terms of leaching of hazardous substances.