• Title/Summary/Keyword: Bonding Phenomena

Search Result 76, Processing Time 0.024 seconds

A Novel Silicon Direct Bonding Technology using Groove Matrix (홈파기를 이용한 새로운 실리콘 직접접합 기술)

  • 김은동;김남균;김상철;박종문;이승환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.81-84
    • /
    • 1995
  • A reliable bonding between two silicon wafers, regularly grooved and non-grooved, was done by the direct boning technology, It is Presented that high structural duality was realized not only at the bended interface but in the bulk, commensurate with the filling of artificial grooves, which would be attributed to the dislocation-gettering capability of groove free-surfaces during annealing. The groove filling would be explained with mass-transport phenomena assisted by the dislocation movement from initial contact boundaries toward groove surfaces. Intrinsic voids can be easily removed by aid of the grooves. The proposed method yielded also an intimate bonding not only between {111} wafers strongly misoriented and slightly inclined to {111} basal plane but even between {111} and {100} orientation wafers.

  • PDF

Observation of Oxide Film Formed at Si-Si Bonding Interface in SFB Process (SFB 공정시 Si-Si 집합 계면에 형성되는 산화막의 관찰)

  • 주병권;오명환;차균현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.1
    • /
    • pp.41-47
    • /
    • 1992
  • In SFB Process, after 110$0^{\circ}C$ annealing in wet OS12T(95$^{\circ}C$ HS12TO bubbling) atmosphere, the existence of the interfacial oxide film in micro-gap at Si-Si bonding interface was identified. The angle lapping/staining and SEM morphologies of bonding interface showed that the growing behavior of interfacial oxide made a contribution to eliminate the micro-gaps having a width of 200-300$\AA$. In case of the diodes composed of p-n wafer pairs made by SFB processes, the annealed one in wet OS12T atmosphere exhibited a dielectric breakdown phenomena of interfacial oxide at 37-40 volts d.c.

  • PDF

Electrokinetic Studies on Nylon and Wool/Acid Dye System (나일론과 양모/산성염료계에 대한 계면동전위적 연구)

  • 박병기;김진우;김찬영
    • Textile Coloration and Finishing
    • /
    • v.1 no.1
    • /
    • pp.19-25
    • /
    • 1989
  • In past, dye diffusion and dyeing rate in fibers have been emphasized in dyeing phenomena. However, in the light of the properties of colloids in the surface of disperse phase and dispersion, there exist specific characters such as adsorption or electric double layer, which seems to play important roles in determining the physiochemical properties in the dyeing system. Electrostatic bonding, hydrogen bonding and Van der Waals adsorption are common in dyeing as well as covalent bonding. Particularly, electrostatic bonding is premised on the existance of ionic radicals in fibers. The present study was aimed to clarify the electrokinetic phenomena of dyeing through the role of electric double layer by ion in amphoteric fibers with different ionic effects under different pH. Spectrophotometric analysis method was used to compare dyeing condition of surface, which can be detected by electrokinetic phenomena and the inner of fibers after deceleration of dyed fibers. Nylon and wool, the typical amphoteric fibers were dyed with monoazo acid dyes such as C.I. Acid Orange 20, and C.I. Acid Orange 10. Various combinations were prepared by combining pH, temperature and dye concentration, in order to generate streaming electric potential which were measured by microvolt meter and specific conductivity meter. The results were transformed to zeta potential by Helmholtz-Smoluchowski formular and to surface electric charge density by Suzawa formular, surface dye amount, and effective surface area of fibers. The amount of dyes of inner fibers were also measured by the Lambert-Beer’s law. The main results obtained are as follows. 1. By measuring zeta pontential, it was possible to detect the dyeing mechanism, surface charge density, surface dye amount and effective surface area concerning dye adsorption of the amphoteric fibers. 2. Zeta pontential increases in negative at low pH and high dye concentration in the process of dyeing. This implied that there existed ionic bond formation in the dyeing mechanism between acid dyes and amphoteric fibers. 3. Dibasic acid dye had little changing rate in zeta potential due to the difference in solubility of dye and in number of dissociated ions per dye molecule to bond with amino radicals of amphoteric fibers. The dye adsorption of mono basic acid dye was higher than that of dibasic acid dye. 4. The effective surface areas concerning dyeing were $6.3E+05\;cm^2/g$ in nylon, $1.6E+07\;cm^2/g$ in wool fiber being higher order of wool then nylon.

  • PDF

Microstructure and Mechanical Properties of TiC-Ni/Al Composites by the Reaction-Bonding Method (반응결합법에 의한 TiC-Ni/Al 복합체의 미세구조 및 기계적 특성)

  • 한인섭;우상국;김흥수;양준환;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.536-546
    • /
    • 1996
  • The TiC-Ni/Al reaction-bonding composites were prepared by the infiltration of Ni/Al melt into the TiC preforms. The microstructure the reaction composition crystalline phase and the mechanical properties of the composites were investigated. During the reaction-bonding Ni/Al mixture had a good wettability and per-meability with TiC preform and pore-free and fully dense sintered bodies were produced. In the case of the Ni/Al atomic ratio of 0.3 and 0.5 TiC raw particle shape was changed to irregular particles because of the decomposition in the liquid matrix and its phenomena was more distinguished in the Al-rich liquid matrix. With increasing more than 1 of the Ni/Al atomic ratio the sample of TiC grain shape was changed from spherical to palatelet particles. Also with increasing the atomic ratio of Ni/Al bending strength and fracture spherical to palatelet particles. Also with increasing the atomic ratio of Ni/Al bending strength and fracture toughness were increased and its maximum value was 1073 MPa and 11 MPa.m1/2 respectively.

  • PDF

Effect of Joint Reformation on Adhesive Strength of 6061 Aluminum Alloy to Polycarbonate Lap Structures

  • D. W. Seo;Kim, H. J.;J. K. Lim
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.53-60
    • /
    • 2004
  • Adhesive-bonded joints are widely used in the industry. Recently, applications of adhesive bonding joints have been increased extensively in automobile and aircraft industry. The strength of adhesive joints is influenced by the surface roughness, adhesive shape, stress distribution, and etc. However, the magnitude of the influence has not yet been clarified because of the complexity of the phenomena. In this study, as the fundamental research of adhesive bonding joints, the effects of adhesive shape and loading speed on bonding strength properties and durability of aluminum to polycarbonate single-lap joints were studied. To evaluate the effect of adhesive shape, several modified shapes were used, and loading speeds were varied from 0.05 to 5mm/min. As a result, the load distribution showed a brittle fracture tendency. The trigonal edged single lap and bevelled lap joints showed the higher strength than the plain single lap, trigonal single lap, joggle lap and double lap joints in same adhesive area. The fractures of trigonal single lap and trigonal edged single lap joints that had the higher strength level were shown as the mixture type of the cohesive and interfacial-failure, mostly joggle lap joints that had the lower strength level were shown as the adhesive-failure.

  • PDF

Shape Design of Adhesive Joints for Strength Improvement of Epoxy Adhesive Structures (에폭시 접착제 접합구조물의 강도향상을 위한 접착부 형상설계)

  • Seo, Do-Won;Kim, Hyo-Jin;Lim, Jae-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.783-790
    • /
    • 2004
  • Adhesive-bonded joints are widely used in the industry. Recently, applications of adhesive bonding joints have been increased extensively in automobile and aircraft industry. The strength of adhesive joints is influenced by the surface roughness, adhesive shape, stress distribution, and etc. However, the magnitude of the influence has not yet been clarified because of the complexity of the phenomena. In this study, as the fundamental research of adhesive bonding joints, the effects of adhesive shape and loading speed on bonding strength properties and durability of aluminum to polycarbonate single-lap joints were studied. To evaluate the effect of adhesive shape, several modified shapes were used, and loading speeds were varied from 0.05 to 5 mm/min. As a result, the load-displacement distribution was shown a brittle fracture tendency. The trigonal edged single lap and bevelled lap joints showed the higher strength than the plain single lap, trigonal single lap, joggle lap and double lap joints in same adhesive area. The fractures of trigonal single lap and trigonal edged single lap joints that had the higher strength level were shown as the mixture type of the cohesive and interfacial-failure, mostly joggle lap joints that had the lower strength level were shown as the adhesive-failure.

Improvement of Bonding Process and Bond Strength of HTPB Propellant/Liner using a Polymeric Curative (고분자 경화제를 사용한 라이너와 HTPB 추진제의 접착력 및 접착공정 개선)

  • Jeong Byung-Hun;Seo Tae-Seok;Hong Myung-Pyo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.413-416
    • /
    • 2005
  • The study has been performed on the improvement of bonding process and bond strength of HTPB propellant and liner using a polymeric curative. In case of liner using polymeric curative prepared from reaction of HTPB and TDI, migration of curative was decreased at bond interface. So EPDM insulation sanding and Desmodur RE coating process could be omitted in motor case preparation and bond strengths between the HTPB propellant and liner were increased. Also deterioration phenomena of bond strength could not be observed in accelerated aging test.

  • PDF

Bonding Behavior of Bioglass Coated Alumina (알루미나에 생체유리의 코팅시 결합의 특성)

  • 김정구;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.7
    • /
    • pp.925-933
    • /
    • 1990
  • The possible use of bioglass,, which is one of the surface active biomaterials, as implants materials has drawn great attention due to their ability to bond to human living tissue. In the present work, the investigation was carried out to find the bonding phenomena between alumina substrate and bioglass(45S5) or fluorine-containing bioglass(45S5$.$4F), and the properties of coated bioglass. The stable bonding between alumina and bioglass was formed when heat-treated at 1150$^{\circ}C$ for 120 minutes or at 1250$^{\circ}C$ for 30 minutes for the 45S5, and at 1150$^{\circ}C$ for 30 minutes for the 45S5$.$4F. When bioglass coated alumina was heat-treated, great amount of Al was diffused into bioglass from alumina substrate. More Al was diffused into fluorine-containing bioglass than into bioglass without fluorine. At early stage of heat-tretment, the diffused alumina content was increased with the square root of time and it was also increased with the thickness of coating layer and heat-treatment temperatures. The alumina content became constant after its saturation for longer heat-treatment time. Coated bioglasses were crystallized to Na2O$.$CaO$.$3SiO2 when heat-treated at lower temperature, and to CaO$.$SiO2 at higher temperature.

  • PDF

Improvement of Bonding Process and Bond Strength of HTPB Propellant/Liner using a Polymeric Curative (고분자 경화제를 사용한 라이너와 HTPB 추진제의 접착력 및 접착공정 개선)

  • Jeong Byung-Hun;Seo Tae-Seok;Hong Myung-Pyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.110-114
    • /
    • 2006
  • The study has been performed on the improvement of bonding process and bond strength of HTPB propellant and liner using a polymeric curative. In case of liner using polymeric curative prepared from reaction of HTPB and TDI, migration of curative was decreased at bond interface. So EPDM insulation sanding and Desmodur RE coating process could be omitted in motor case preparation and bond strengths between the HTPB propellant and liner were increased. Also deterioration phenomena of bond strength could not be observed in accelerated aging test.

A Characteristic of Microstructures in Bonding Interlayer of Brazed Titanium to Copper (브레이징한 Ti/Cu 접합계면부의 미세조직 특성)

  • 김우열;정병호;이성렬
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.106-115
    • /
    • 1995
  • To know the bonding phenomena of Ti/Cu brazed joint, a characteristic of microstructures in bonding interlayer of vacuum brazed pure Ti to Cu has been studied in the temperature range from 1088 to 1133K for various bonding times using Ag-28wt%Cu filler metal. Also intermediate phases formed in bonded interlayer and behavior of layer growth have been investigated. The obtained results in this study are as follows: 1) Liquid insert metal width at the each brazing temperature was proportional to the square root of brazing time, and it was considered that the liquid insert metal width was controlled by the diffusion rate process of primary .alpha.-Cu formed at the Ti side. 2) Intermediate phases formed near the Ti interface were .betha.-Ti and intermetallic compounds TiCu, Ti$_{2}$Cu, Ti$_{3}$Cu, and TiCu. 3) .betha.-Ti formed in Ti base metal durig brazing transformed to lamellar structure, .alpha.-Ti + Ti$_{2}$Cu. The structure came from the eutectoil decomposition reaction in cooling. And the width of .betha.-Ti layer was proportional to the square root of brazing time, and it was considered that the growth of .betha.-Ti layer was controlled by interdiffusion rate process in .betha.-Ti. 4) The layer growth of TiCu, Ti$_{3}$Cu$_{4}$ and TiCu, phases formed near the Ti interface was linerface was linearly proportional to the brazing time, and it was considered that the layer growth of these phases was controlled by the chemical reaction rate at the interface.

  • PDF