• Title/Summary/Keyword: Bonding Method

Search Result 1,371, Processing Time 0.034 seconds

Fiber-optic Mach-Zehnder Interferometer for the Detection of Small AC Magnetic Field (미소 교류 자기장 측정을 위한 Mach-Zehnder 광섬유 간섭계 자기센서 특성분석)

  • 김대연;안준태;공홍진;김병윤
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.139-148
    • /
    • 1991
  • A fiber-optic magnetic sensor system for the detection of small ac magnetic field(200Hz-2 kHz) was constructed. Magnetic field sensing part was fabricated by bonding a section of optical fiber to amorphous metallic glass(2605SC) having large magnetostriction effect. And with the directional coupler, all fiber type Mach-Zehnder interferometer was constructed to measure the variation of the external magnetic field by translating it into the optical phase shift in the interferometer. The signal fading problem of the interferometer, which is due to random phase drifts originated from the environment, i.e., temperature fluctuation, vibrations, etc., was elliminated by feedback phase compensation. This allows the sensitivity to be maintained at the maximum by keeping the interferometer in quadrature phase condition. The frequency response of metallic glass was found to be nearly flat in the range of 90 Hz-2 kHz and dc bias field for the maximum ac response was 3.5 Oe. The interferometer output showed good linearity over the range $\pm$0.5 Oe. For 1 kHz ac magnetic field the scale factor S and the minimum detectable magnetic field were measured to be 8.0 rad/Oe and $3X10^{-6} Oe/\sqrt{Hz}$at 1 Hz detection bandwidth respectively.

  • PDF

The Chemical Bond of Cu Atom in Layer and Chain for Y123 and Y124 Superconductors (Y123 초전도체 및 Y124 초전도체에서 층과 사슬에 존재하는 구리 원자의 화학결합)

  • Man Shick Son;U-Hyon Paek;Lee Kee-Hag
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.4
    • /
    • pp.477-484
    • /
    • 1992
  • Using semiempirical molecular orbital method, ASED-MO of extended Huckel Theory, we were investigated chemical bonds and electronic properties of Cu atom in a chain and a layer for Y123 and Y124 superconductors from VEP (valence electron population), DOS (density of state), and COOP (crystal orbital overlap population). In order to investigate environmental effects of Cu atom for Y123 and Y124 superconductors, we introduced charged cluster models with point charge and without point charge into our calculations. As a result of ASED-MO calculations, the Cu atom in the layer acts as electron acceptor and the Cu atom in the chain acts as electron donor for Y123 and Y124 superconductors. The oxidation state of Cu atom for Y123 and Y124 superconductors without point charge is higher in the chain than in the layer. The oxidation state of Cu atom in the layer for Y123 superconductor is higher than that in the layer for Y124 superconductor. The Cu atom in the layer and the chain for Y123 superconductor does not largely affect on the environmental effect. However, the Cu atom in the layer and the chain for Y124 superconductor does largely affect on it. Also, electron population and chemical bonding of Cu1-O4, Cu2-O4, and Cu1-Cu2 for Y123 superconductor are far different from Y124 superconductor.

  • PDF

Compression Dynamic Performance of Glass Bubble/Epoxy Resin Adhesion (글라스버블/에폭시 수지 접착부의 극저온 압축 동적 성능)

  • Bae, Jin-Ho;Hwang, Byeong-Kwan;Lee, Jae-Myung
    • Composites Research
    • /
    • v.32 no.2
    • /
    • pp.90-95
    • /
    • 2019
  • Sloshing impact loads on liquefied natural gas (LNG) carr iers are the main issue of damage to the insulation system in LNG cargo containment system (LNG CCS). The damage to the insulation system would be fatal in maintaining a temperature-savings environment in LNG CCS. The typical method is to enhance the insulation materials that can maintain a constant cryogenic temperature. Insulation materials consist of polyurethane foam and plywood, an adhesive for bonding these two materials. This study intends to improve the absorption energy of the material when the impact load is applied by creating a glass bubble/epoxy composite resin as part of the insulation. The experimental scenarios consider the effect of temperature ($20^{\circ}C$, $-163^{\circ}C$), glass bubble weight fraction in epoxy resin through free fall experiments. Experiments have shown that if the glass bubble additive reaches 20 wt.%, the cryogenic absorption energy is a maximum performance and that 0 wt.% has a maximum ambient absorption energy. However, the agglomeration has been occurred due to deterioration of the stirring performance if weight fraction was 20 wt.% and the result of 0 wt.% have been revealed that ambient absorption energy is significantly lower.

Evaluation of Lateral Load Resistance and Heating/Cooling/Lighting Energy Performance of a Post-disaster Refugees Housing Using Lightweight composite Panels (경량 복합패널을 활용한 구호주거의 횡하중 저항성능 및 냉난방조명 에너지성능 평가)

  • Hwang, Moon-Young;Lee, Byung-Yun;Kang, Su-Min;Kim, Sung-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.252-262
    • /
    • 2019
  • Following the earthquake in Gyeongju (2016) and Pohang (2017), South Korea is no longer a safe place for earthquakes. Accordingly, the need for shelters suitable for disaster environments is increasing. In this study, a lightweight composite panel was used to produce post-disaster housing for refugees to compensate for the disadvantages of existing evacuation facilities. For this purpose, an evaluation of structural performance and thermal environment for post-disaster housing for refugees composed of lightweight composite panels was performed. To assess the structural performance, a lateral loading test was conducted on a system made of lightweight composite panels. The specimens consisted of two types, which differed according to the bonding method, as a variable. In addition, the seismic and wind loads were calculated in accordance with KBC 2016 and compared with the experimental results. Regarding the energy performance, optimization of south-facing window planning and window-wall ratio and solar heat gain coefficient were analyzed to minimize heating, cooling, and lighting energy. As a result, the specimens composed of lightweight composite panels will perform sufficiently safely for lateral loads and the optimized window planning will lead to a low-energy operation.

Odor Reduction of Pig Wastewater Using Magnesia (in-situ test) (마그네시아를 이용한 돈분 폐수의 악취 저감(현장 시험))

  • Bae, Su Ho;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.3
    • /
    • pp.202-208
    • /
    • 2022
  • In this study, we tried to obtain the optimal conditions to reduce odors generated from pig wastewater using magnesia (MgO) through in-situ test after producing a reactor for removing odors. For this purpose, the filling amount of magnesia, the injection amount of pig wastewater, the aeration method, the aeration amount and the aeration time were considered. The field experiment was conducted at Cheongwoon Livestock Farm, which has a pig wastewater reservoir. As the amount of magnesia added to the weight of wastewater (500 kg) increases, the amount of ammonia (NH3) and hydrogen sulfide (H2S) generated tended to gradually decrease. As a result of the test, ammonia and hydrogen sulfide in the pig wastewater decreased up to 65% and 77%, respectively, for 2 days aeration after 0.8% of magnesia was added to the reaction tank. The initial pH of the pig wastewater in the reactor was 8.2, and the pH was found to be 9.2 when magnesia was added up to 0.8%. In the light of this trend, it can be known that magnesia gradually increases the pH in the pig wastewater and makes it weakly alkaline. As the pH increases, part of the ammonia gas present in the pig wastewater vaporizes into the air and the remaining part is removed by precipitation after chemical bonding with dissolved magnesium ions and phosphate ions. In order to remove the odor of pig wastewater and turn it into compost, most of the existing livestock farms go through a six-month aeration process using microorganisms. In contrast, the current study proved the effect of removing odors from pig wastewater within 2 days through chemical reactions that do not affect microbial activity.

Synthesis of akermanite bioceramics by solid-state reaction and evaluation of its bioactivity (고상반응법에 의한 아커마나이트 분말의 합성 및 생체활성도 평가)

  • Go, Jaeeun;Lee, Jong Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.191-198
    • /
    • 2022
  • Zirconia and titanium alloys, which are mainly used for dental implant materials, have poor osseointegration and osteogenesis abilities due to their bioinertness with low bioactivity on surface. In order to improve their surface bioinertness, surface modification with a bioactive material is an easy and simple method. In this study, akermanite (Ca2MgSi2O7), a silicate-based bioceramic material with excellent bone bonding ability, was synthesized by a solid-state reaction and investigated its bioactivity from the analysis of surface dissolution and precipitation of hydroxyapatite particles in SBF solution. Calcium carbonate (CaCO3), magnesium carbonate (MgCO3), and silicon dioxide (SiO2) were used as starting materials. After homogeneous mixing of starting materials by ball milling and the drying of at oven, uniaxial pressing was performed to form a compacted disk, and then heat-treated at high temperature to induce the solid-state reaction to akermanite. Bioactivity of synthesized akermanite disk was evaluated with the reaction temperature from the immersion test in SBF solution. The higher the reaction temperature, the more pronounced the akermanite phase and the less the surface dissolution at particle surface. It resulted that synthesized akermanite particles had high bioactivity on particle surface, but it depended on reacted temperature and phase composition. Moderate dissolution occurred at particle surfaces and observed the new precipitated hydroxyapatite particles in synthetic akermanite with solid-state reaction at 1100℃.

Electrochemical Characteristics of High Capacity Anode Composites Using Silicon and CNT for Lithium Ion Batteries (실리콘과 CNT를 사용한 리튬 이온 전지용 고용량 음극복합소재의 전기화학적 특성)

  • Lee, Tae Heon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.446-451
    • /
    • 2022
  • In this study, to improve capacity and cycle stability, the pitch coated nano silicon sheets/CNT composites were prepared through electrostatic bonding of nano silicon sheets and CNT. Silica sheets were synthesized by hydrolyzing TEOS on the crystal planes of NaCl, and then nano silicon sheets were prepared by using magnesiothermic reduction method. To fabricate the nano silicon sheets/CNT composites, the negatively charged CNT after the acid treatment was used to assemble the positively charged nano silicon sheets modified with APTES. THF as a solvent was used in the coating process of PFO pitch. The physical properties of the prepared anode composites were analysed by FE-SEM, XRD and EDS. The electrochemical performances of the synthesized anode composites were performed by current charge/discharge, rate performances, differential capacity and EIS tests in the electrolyte LiPF6 dissolve solvent (EC:DMC:EMC = 1:1:1 vol%). It was found that the anode material with high capacity and stability could be synthesized when high composition of silicon and conductivity of CNT were used. The pitch coated nano silicon sheets/CNT anode composites showed initial discharge capacity of 2344.9 mAh/g and the capacity retention ratio of 81% after 50 cycles. The electrochemical property of pitch coated anode material was more improved than that of the nano silicon sheets/CNT composites.

Application and conservation of 3D technology for the restoration of the original shape of military boots excavated in the DMZ (비무장지대 출토 군화의 형태 복원을 위한 3차원 디지털 기술의 적용 및 보존처리)

  • OH Seungjun;WI Koangchul
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.2
    • /
    • pp.124-133
    • /
    • 2023
  • Preservation processing for two combat boots was executed through application of 3-dimensional digital technology and with use of preservation materials providing outstanding reversibility and stability. The aim of this was to establish a method to preserve the relics of fallen Korean War soldiers that had been excavated by the soldiers remains excavation corps of the Ministry of National Defense. It was possible to estimate the foot size of the soldiers who would have worn the combat boots via 3-dimensional digital scanning and modeling of the boots. In this process, the original form of the combat boots was restored through the use of 3D-printed structures. The original form was restored through a process of removing contaminants from the excavated relics and performing a conditioning treatment, and through use of an antique-color treatment after bonding and filling in the sections that had been ripped or deteriorated. Following the aforementioned preservation processes, it was possible to confirm that both of the combat boots had soles and top sections made of rubber, and portions of the top section and ankle section of the boots were made of synthetic rubber. As such, it was confirmed that these were similar to the Shoe Pac(M-1944, 12-inch) winter boots that had been manufactured for the purposes of waterproofing and/or protection against cold, and introduced in 1944. Such results confirmed that it is possible to discover the manufacturing techniques, materials, and uses of relics excavated through application of preservation processing, thereby illustrating the importance of the convergent research of scientific preservation processing and 3-dimensional digital technology.

Research on Physicochemical Properties of Graphene Oxide (GO) and Reduced Graphene Oxide (R-GO) (그래핀 옥사이드(Graphen Oxide, GO)와 환원 그래핀의 (Reduced graphe oxide, R-GO)의 물리화학적 특성 연구)

  • Moo-Sun Kim;Ho-Yong Lee;Sung-Woong Choi
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.167-172
    • /
    • 2023
  • The manufacturing technology of composite material is applicable with filler characteristics maintaining low cost, flexibility, and easy process to develope the various functional composite materials. To realize functional composites, various researches on the high performance of composite materials using graphene as a filler is being actively conducted. In this study, physical and chemical properties were investigated using graphene to improve high functional properties. Graphene oxide (GO) was prepared using graphane nanoplatelet (GNP), and reduced graphene oxide (R-GO) was formed by reducing GO. The physical properties of GO and R-GO were analyzed, and the reliability of the manufactured method was reviewed by comparing that of GNP results. As a result of analysis by Raman spectroscopy, in the case of R-GO, it was confirmed that the intensity of D-peak and G-peak decreased compared to GO, and an increase of 0.08 was observed through the ratio of ID/IG. For the FTIR results, GO and RGO has a repeating C-C and C=C connection structure unlike GNP. GO and R-GO show clear peaks for C-O bond, C=C bond, C=O bond, and O-H bonding. As a result of X-ray diffraction analysis, GNP showed a wide diffraction peak at 25.86° of (002) plane characteristics, whereas GO and R-GO showed peaks corresponding to (001) and (100) planes. It was also found that the interlayer distance of GO increased by about 2.6 times compared to GNP.

Effect of Different Curing Methods on the Unconfined Compressive Strength of Cemented Sand (양생방법에 따른 고결모래의 일축압축강도 특성)

  • Park, Sung-Sik;Kim, Ki-Young;Choi, Hyun-Seok;Kim, Chang-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.207-215
    • /
    • 2009
  • Cemented soils or concrete are usually cured under moisture conditions and their strength increases with curing time. An insufficient supply of water to cemented soils can contribute to hydration process during curing, which results in the variation of bonding strength of cemented soils. In this study, by the consideration of in situ water supply conditions, cemented sand with cement ratio less than 20% is prepared by air dry, wrapped, moisture, and underwater conditions. A series of unconfined compression tests are carried out to evaluate the effect of curing conditions on the strength of cemented soils. The strength of air dry curing specimen is higher than those of moisture and wrapped cured specimens when cement ratio is less than 10%, whereas it is lower when cement ratio is greater than 10%. Regardless of cement ratio, air dry cured specimens are stronger than underwater cured specimens. A strength increase ratio with cement ratio is calculated based on the strength of 4% cemented specimen. The strength increase ratio of air dry cured specimen is lowest and that of wrapped, moisture, and underwater cured ones increased by square. Strength of air dry cured specimen drops to maximum 30% after wetting when cement ratio is low. However, regardless of cement ratio, strength of moisture and wrapped specimens drops to an average 10% after wetting. The results of this study can predict the strength variation of cemented sand depending on water supply conditions and wetting in the field, which can guarantee the safety of geotechnical structures such as dam.