• Title/Summary/Keyword: Bonded repair

Search Result 102, Processing Time 0.023 seconds

Fatigue Behavior of Cracked Al 6061-T6 Alloy Structures Repaired with Composite Patch

  • Yoon, Young-Ki;Park, Jong-Joon;Kim, Guk-Gi;Yoon, Hi-Seak
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.5-10
    • /
    • 2001
  • Due to the development of high-strength fibers and adhesives, it is now possible to repair cracked metallic plates by bonding reinforced patches to the plate over the crack. In this study, pre-cracked aluminum 6061-T6 alloy plates repaired with bonded carbon/epoxy composite patch are applied to investigate the effect of various patch shapes on the tensile strength and the fatigue behavior of the structure. A non-patch-boned cased and 2 type-50$\times$50, 40$\times$20 mm-composite patch-bonded cases were tested to obtain fracture loads and fatigue crack growth rate. The results showed that the patch-bonded repair improves the static strength by 17% and the fatigue life by 200% compared to non-repaired case. It means that patch-boned repair is more effective in the fatigue life. It was also revealed that the patching method along crack growth direction is more efficient in cost and weight reduction. By observing the fractography, patch-bonded repair specimens demonstrated zigzag fracture patterns compared with the non-patched specimens, which shows a typical ductile fracture.

  • PDF

Analysis of the adhesive damage between composite and metallic adherends: Application to the repair of aircraft structures

  • Ibrahim, Nour Chafak;Bouanani, Morad Fari;Bouiadjra, Bel Abbes Bachir;Serier, Boualem
    • Advances in materials Research
    • /
    • v.5 no.1
    • /
    • pp.11-20
    • /
    • 2016
  • In bonded composite repair of aircraft structures, the damage of the adhesive can thus reduce significantly the efficiency and the durability of the bonded composite repair. The adhesive damage models using critical zone have proven their effectiveness due to simplicity and ap-plicability of the damage criteria in these models. The scope of this study is to analyze the effects of the patch thickness and the adhesive thickness on the damage damage in bonded composite repair of aircraft structures by using modified damage zone theory. The obtained results show that, when the thickness of adhesive increases the damage zone increases and the adhesive loses its rigidity, inversely when the patch is reduced the adhesive damage be-comes more significant.

A Study of the Mechanical Properties of Patch-Bonded and Riveted Repairs on Cracked Al 6061-T6 alloy Structures

  • Yoon, Young-Ki;Kim, Guk-Gi;Yoon, Hi-Seak
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.55-60
    • /
    • 2000
  • A comparison of Riveted and bonded repairs, bearing and net tension failures, and Al 6061-T6 plates is presented. The results are then compared with previous papers about bonded repairs on different patch materials and shapes. Aluminum alloys, including Al 6061-T6, have a face-centered-cubic crystal structure. Under normal circumstances, these types of crystal structures do not exhibit cleavage fractures even at very low temperatures. In aluminum-base structures, the cracked plate structures are frequently repaired using mechanical fasteners-either rivets of bolts- even though patch-bonding techniques are applied to repair and reinforce the structure. Static test results indicate that the riveted repairs are affected by the position of the rivers. When using the same size of patch, the bonded repair technique is stronger; the rate of elongation is also increased. Form FEM analysis, it is revealed the origin of patch debonding in patch-bonded structures is the edge of the patch along to the tensile strength.

  • PDF

Bonding Strength of bonded Polymer Concrete on Cured Cement Concrete (경화된 콘크리트에 접착된 폴리머 콘크리트의 부착강도 특성)

  • 홍승호;권순민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.353-358
    • /
    • 2001
  • The cement concrete pavements are designed twenty years of performance life in Korea. At the present time, some expressways have been elapsed seventy percent of performance life which are detecting local failures. The most repair methods using to repair failures are partial depth repair and full section repair. These methods are most important bonding strength between rapid curing materials and substrate concrete pavements. This study was performed to evaluate bonding strength of the composites section made of rapid curing material and substrate concrete pavements. The pull-out tester was used to test bonding strength for the composites section made of each materials. In the results of the test, the bonding strength values of the epoxy mortar and acrylic mortar are higher than those of the other materials. The performance life of repaired section is affected by various factor. The bonding strength of bonded composites section may be affect the performance life, significantly.

  • PDF

Analysis of the adhesive damage for different patch shapes in bonded composite repair of corroded aluminum plate

  • Mohamed, Berrahou;Bouiadjra, B. Bachir
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.123-132
    • /
    • 2016
  • Many military and commercial aging aircrafts flying beyond their design life may experience severe crack and corrosion damage, and thus lead to catastrophic failures. In this paper, were used in a finite element model to evaluate the effect of corrosion on the adhesive damage in bonded composite repair of aircraft structures. The damage zone theory was implemented in the finite element code in order to achieve this objective. In addition, the effect of the corrosion, on the repair efficiency. Four different patch shapes were chosen to analyze the adhesive damage: rectangular, trapezoidal, circular and elliptical. The modified damage zone theory was implemented in the FE code to evaluate the adhesive damage. The obtained results show that the adhesive damage localized on the level of corrosion and in the sides of patch, and the rectangular patch offers high safety it reduces considerably the risk of the adhesive failure.

Repair methods for aging aircraft and application of composite patch repair (노후항공기의 보수 방법 및 복합재 패치보수의 응용)

  • 김위대;김종진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.167-172
    • /
    • 2002
  • During the operation of military aircraft, maintenance is divided into organizational, intermediate and depot maintenance. In the depot maintenance, after removal of major parts and removable doors, damage assessment is performed. Locating damage, charactering the damage and determining its extent, zoning the damage on the part being repaired and re-evaluation of the damaged area after damage removal. Repair joints are classified by bonded joints and bolted joints, depending on joining material. In this paper, repair method in aging aircraft is investigated and the possibility of application of copmposite patch is surveyed.

  • PDF

A Study on Fatigue Crack Growth of Composite Patching Repaired on Cracked Thick Plate (복합재료 보강재로 보수되어진 균열을 가진 두꺼운 평판의 피로균열 성장에 관한 연구)

  • Jeong, Gi-Hyeon;Yang, Won-Ho;Go, Myeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2070-2077
    • /
    • 2001
  • An experimental investigation of the effect of composite patching repair was conducted to characterize the fatigue crack growth behavior in thick A16061-T6 (6mm) panels with single bonded patch by fiber reinforced composite patch. Four patch lengths and no patch plate were examined. An analytical procedure, involving three-dimensional finite element method having three layers to model cracked aluminum plate, epoxy by adhesive and composite Patch, is calculated the stress intensity factors. From the calculated stress intensity factors, the fatigue crack growth rates are obtained. At the single patching type, different fatigue crack growth ratios through the palate thickness were investigated by using the experimental and analytical results. The results demonstrated that there was a definite variation in fatigue life depending on the size of composite patch. While crack reached the patch end, retardation of crack growth was also revealed in the bonded repair.

A Experimental Study on the Fatigue Crack Growth Behavior of Thick Plate with Repaired Crack (보수된 균열을 가진 두꺼운 평판의 피로균열 성장 거동에 관한 실험적 연구)

  • Chung, Ki-Hyun;Yang, Won-Ho;Kim, Cheol;Sung, Ki-Deug
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.292-298
    • /
    • 2001
  • An experimental investigation of the effect of composite patching repair was conducted to characterize the fatigue crack growth behavior in thick A16061-T6 (6mm) panels with single bonded patch by fiber reinforced composite patch. Four patch lengths and no patch plate were examined. An analytical procedure, involving three-dimensional finite element method having three layers to model cracked aluminum plate, epoxy by adhesive and composite patch, is calculated the stress intensity factors. From the calculated stress intensity factors, the fatigue crack growth rates are obtained. At the single patching type, different fatigue crack growth ratios through the plate thickness were investigated by using the experimental and analytical results. The results demonstrated that there was a definite variation in fatigue life depending on the size of composite patch. While crack reached the patch end, retardation of crack growth was also revealed in the bonded repair.

  • PDF

DEVELOPMENT AND REPAIR OF LAMINATE TOOLS BY JOINING PROCESS

  • Yoon, Suk-Hwan;Na, Suck-Joo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.402-407
    • /
    • 2002
  • Laminate tooling process is a fast and simple method to make metal tools directly for various molding processes such as injection molding in rapid prototyping field. Metal sheets are usually cut, stacked, aligned and joined with brazing or soldering. Through the joining process, all of the metal sheet layers should be rigidly joined. When joining process parameters are not appropriate, there would be defects in the layers. Among various types of defects, non-bonded gaps of the tool surface are of great importance, because they directly affect the surface quality and dimensional accuracy of the final products. If a laminate tool with defects has to be abandoned, it could lead to great loss of time and cost. Therefore a repair method for non-bonded gaps of the surface is essential and has important meaning for rapid prototyping. In this study, a rapid laminate tooling system composed of a CO2 laser, a furnace, and a milling machine was developed. Metal sheets were joined by furnace brazing, dip soldering and adhesive bonding. Joined laminate tools were machined by a high-speed milling machine to improve surface quality. Also, repair brazing and soldering methods of the laminates using the $CO_2$ laser system have been investigated. ill laser repair process, the beam duration, beam power and beam profile were of great importance, and their effects were simulated by [mite element methods. The simulation results were compared with the experimental ones, and optimal parameters for laser repair process were investigated.

  • PDF

A new formulation of the J integral of bonded composite repair in aircraft structures

  • Serier, Nassim;Mechab, Belaid;Mhamdia, Rachid;Serier, Boualem
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.745-755
    • /
    • 2016
  • A three-dimensional finite element method is used for analysis of repairing cracks in plates with bonded composite patch in elastic and elastic plastic analysis. This study was performed in order to establish an analytical model of the J-integral for repair crack. This formulation of the J-integral to establish models of fatigue crack growth in repairing aircraft structures. The model was developed by interpolation of numerical results. The obtained results were compared with those calculated with the finite element method. It was found that our model gives a good agreement of the J-integral. The arrow shape reduces the J integral at the crack tip, which improves the repair efficiency.