Browse > Article
http://dx.doi.org/10.12989/amr.2016.5.1.011

Analysis of the adhesive damage between composite and metallic adherends: Application to the repair of aircraft structures  

Ibrahim, Nour Chafak (LMPM, Department of mechanical engineering, Univresity of Sidi Bel Abbes)
Bouanani, Morad Fari (LMPM, Department of mechanical engineering, Univresity of Sidi Bel Abbes)
Bouiadjra, Bel Abbes Bachir (LMPM, Department of mechanical engineering, Univresity of Sidi Bel Abbes)
Serier, Boualem (LMPM, Department of mechanical engineering, Univresity of Sidi Bel Abbes)
Publication Information
Advances in materials Research / v.5, no.1, 2016 , pp. 11-20 More about this Journal
Abstract
In bonded composite repair of aircraft structures, the damage of the adhesive can thus reduce significantly the efficiency and the durability of the bonded composite repair. The adhesive damage models using critical zone have proven their effectiveness due to simplicity and ap-plicability of the damage criteria in these models. The scope of this study is to analyze the effects of the patch thickness and the adhesive thickness on the damage damage in bonded composite repair of aircraft structures by using modified damage zone theory. The obtained results show that, when the thickness of adhesive increases the damage zone increases and the adhesive loses its rigidity, inversely when the patch is reduced the adhesive damage be-comes more significant.
Keywords
composite repair; crack; damage zone theory; cohesive failure; finite element method; dam-age ratio; stress intensity factor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 ABAQUS/CAE Ver 6.9 (2007), User's Manual, Hibbitt, Karlsson & Sorensen, Inc.
2 Alderliesten, R.C. (2009), "Damage tolerance of bonded aircraft structures", Int. J. Fatigue, 31(6), 1024-1030.   DOI
3 Apalak, M.K., Apalak, Z.G. and Gunes, R. (2004), "Thermal and geometrically nonlinear stress analyses of an adhesively bonded composite tee joint with double support", J. Therm. Compos. Mater., 17(2), 103-136.   DOI
4 Atluri, S.N. (1997), Structural integrity and durability, Forsyth, Georgia, USA, Tech Science Press.
5 Baker, A.A. and Chester, R.J. (1993), "Recent advances in bonded composite repair technology for metallic aircraft components", Proceeding of the International Conference on Ad Comp Materials, 45-9.
6 Baker, A.A. and Jones, R. (1988), Bonded repair of aircraft structures, Dordrecht: Martinus Nijhoff.
7 Ban, C.S., Lee, Y.H., Choi, J.H. and Kweon, J.H. (2008), "Strength prediction of adhesive joints using the modified damage zone theory", Compos. Struct., 86(1), 96-100.   DOI
8 Beloufa, H., Ouinas, D., Tarfaoui, M. and Benderdouche, N. (2016), "Effect of stacking sequence of the bonded composite patch on repair performance", Struct. Eng. Mech., 57(2), 295-313.   DOI
9 Bouiadjra, B.B., Oudad, W., Albedah, A., Benyahia, F. and Belhouari, M. (2012), "Effects of the adhesive disband on the performances of bonded composite repairs in aircraft structures", Mater. Des., 37, 89-95.   DOI
10 Bouiadjra, B.B., Ouinas, D., Serier, B. and Benderdouche, N. (2008), "Disbond effects on bonded boron/epoxy composite repair to aluminium plates", Comput. Mater. Sci., 42(2), 220-227.   DOI
11 Callinan, R.J., Sanderson, S. and Keeley, D. (1997), Finite element analysis of an F-111 lower wing skin fatigue crack repair, DSTO, Melbourne, DSTO-TN-0067.
12 Caminero, M.A., Pavlopoulou, S., Lopez-Pedrosa, M., Nicolaisson, B.G., Pinna, C. and Soutis, C. (2013), "Analysis of adhesively bonded repairs in composites: damage detection and prognosis", Compos. Struct., 95, 500-517.   DOI
13 Chow, W. and Atluri, S. (1997), "Composite patch repairs of metal structures: adhesive nonlinearity, thermal cycling, and debonding", AIAA J., 35(9), 1528-1535.   DOI
14 Crocombe, A.D., Richardson, G. and Smith, P.A. (1995), "A unified approach for predicting the strength of cracked and non-cracked adhesive joints", J. Adhesion, 49(3-4), 211-244.   DOI
15 Magalhaes, A.G., De Moura, M.F.S.F. and GonCalves, J.P.M. (2005), "Evaluation of stress concentration effects in single-lap bonded joints of laminate composite materials", Int. J. Adhes. Adhes., 25(4), 313-319.   DOI
16 Hart-Smith, L.J. (1985), The design of repairable advanced composite structures, Douglas Paper 7550, McDonnell Douglas, Douglas Aircraft Company.
17 Jones, R. and Chiu, W.K. (1999), "Composite repairs to cracks in thick metallic components", Compos. Struct., 44(1), 17-29.   DOI
18 Lena, M.R., Klug, J.C. and Sun, C.T. (1998), "Composite patches as reinforcements and crack arrestors in aircraft structures", J. Aircraft, 35(2), 318-323.   DOI
19 Oudad, W., Bouiadjra, B.B., Belhouari, M., Touzain, S. and Feaugas, X. (2009), "Analysis of the plastic zone size ahead of repaired cracks with bonded composite patch of metallic aircraft structures", Comput. Mater. Sci., 46(4), 950-954.   DOI
20 Ouinas, D., Bouiadjra, B.B. and Serier, B. (2007), "The effects of disbonds on the stress intensity factor of aluminium panels repaired using composite materials", Compos. Struct., 78(2), 278-284.   DOI
21 Ouinas, D., Bouiadjra, B.B., Achour, T. and Benderdouche, N. (2010), "Influence of disbond on notch crack behaviour in single bonded lap joints", Mater. Des., 31(9), 4356-4362.   DOI
22 Ouinas, D., Bouiadjra, B.B., Himouri, S. and Benderdouche, N. (2012), "Progressive edge cracked aluminium plate repaired with adhesively bonded composite patch under full width disbond", Compos. Part B: Eng., 43(2), 805-811.   DOI
23 Papanikos, P., Tserpes, K.I. and Pantelakis, S. (2007), "Initiation and progression of composite patch debonding in adhesively repaired cracked metallic sheets", Compos. Struct., 81(2), 303-311.   DOI
24 Sheppard, A., Kelly, D. and Tong, L. (1998), "A damage zone model for the failure analysis of adhesively bonded joints", Int. J. Adhes. Adhes., 18(6), 385-400.   DOI
25 Poole, P. (2002), "Graphite/epoxy patching efficiency studies", Adv. Bond. Compos. Repair. Metal. Aircraft Struct., 1, 415-41.   DOI
26 Qing, X.P., Beard, S.J., Kumar, A. and Hannum, R. (2006), "A real-time active smart patch system for monitoring the integrity of bonded repair on an aircraft structure", Smart Mater. Struct., 15(3), N66.   DOI
27 Rose, L.R.F. (1982), "A cracked plate repaired by bonded reinforcements", Int. J. Fract., 18(2), 135-144.   DOI
28 Xu, W. and Wei, Y. (2012), "Strength and interface failure mechanism of adhesive joints", Int. J. Adhes. Adhes., 34, 80-92.   DOI