• Title/Summary/Keyword: Bond number

Search Result 309, Processing Time 0.027 seconds

Influence of cement thickness on resin-zirconia microtensile bond strength

  • Lee, Tae-Hoon;Ahn, Jin-Soo;Shim, June-Sung;Han, Chong-Hyun;Kim, Sun-Jai
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.3
    • /
    • pp.119-125
    • /
    • 2011
  • PURPOSE. The aim of this study was to evaluate the influence of resin cement thickness on the microtensile bond strength between zirconium-oxide ceramic and resin cement. MATERIALS AND METHODS. Thirty-two freshly extracted molars were transversely sectioned at the deep dentin level and bonded to air-abraded zirconium oxide ceramic disks. The specimens were divided into 8 groups based on the experimental conditions (cement type: Rely X UniCem or Panavia F 2.0, cement thickness: 40 or 160 ${\mu}m$, storage: thermocycled or not). They were cut into microbeams and stored in $37^{\circ}C$ distilled water for 24 h. Microbeams of non-thermocycled specimens were submitted to a microtensile test, whereas those of thermocycled groups were thermally cycled for 18,000 times immediately before the microtensile test. Three-way ANOVA and Sheffe's post hoc tests were used for statistical analysis (${\alpha}$=95%). RESULTS. All failures occurred at the resin-zirconia interface. Thermocycled groups showed lower microtensile bond strength than non-thermocycled groups (P<.001). Differences in cement thickness did not influence the resin-zirconia microtensile bond strength given the same resin cement or storage conditions (P>.05). The number of adhesive failures increased after thermocycling in all experimental conditions. No cohesive failure was observed in any experimental group. CONCLUSION. When resin cements of adhesive monomers are applied over air-abraded zirconia restorations, the degree of fit does not influence the resin-zirconia microtensile bond strength.

THE EFFECT OF ADHESIVE PROPERTY ON MICROTENSILE BOND STRENGTH TO HUMAN DENTIN (상아질 접착제의 성상이 미세인장결합강도에 미치는 영향)

  • Kim, Hyoun-Jin;Hur, Bock;Kim, Hyun-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.3
    • /
    • pp.281-287
    • /
    • 2004
  • The purposes of this study were to evaluate the effect of adhesive property on microtensile bond strength and to determine the failure mode. Flat occlusal dentin surfaces were prepared using low-speed diamond saw. The dentin was etched with 37% phosphoric acid. The following adhesives were applied to the etched dentin to manufacturer's directions: Scotchbond Multi-Purpose in group SM, Prime&Bond NT in group NT, Scotchbond Multi-Purpose followed by Tetric-flow in group TR. After adhesive application, a cylinder of resin-based composite was built up on the occlusal surface. Each tooth was sectioned vertically to obtain the $1{\;}{\times}{\;}1\textrm{mm}^2$ "sticks". Microtensile bond strength were determined. Each specimen was observed under stereomicroscope and scanning electron microscope (SEM) to examine the failure mode. Data were analyzed using one way ANOVA. The results of this study were as follows:1. The microtensile bond strength value were:group SM ($18.98{\pm}3.01MPa$). group NT ($16.01{\pm}4.82MPa$) and group TR ($17.56{\pm}3.22MPa$). No significant statistical differences were observed among the groups (P>0.05). 2. Most of specimens showed mixed failure. In group TR, there was a higher number of specimens showing areas of cohesive failure in resin.

A Study on the Investment Effect of Convertible Bond (전환사채의 투자효과에 관한 연구)

  • Kim, Sun-Je
    • Journal of Industrial Convergence
    • /
    • v.18 no.5
    • /
    • pp.1-13
    • /
    • 2020
  • The purpose of this study is to find out how much the investment effect of convertible bond(CB) is from the perspective of investors and to present efficient investment plans to investors. The research method is to investigate the coupon interest rate, maturity interest rate, conversion price, etc. for CBs. As a result of the study, it was analyzed that CB's investment efficiency was low because the conversion price excess days ratio was only about 1/4 of the conversion date. The conversion day yield was -6.3% and the maturity day yield was -5.2% on average. It was analyzed that the number of stocks with negative conversion day yield was 2.4 times higher than the number of positive stocks and 3.7 times higher than the number of positive stocks with a maturity day yield, so the expected return on equity conversion of CB was low.

Effect of a Fluoride - Containing Orthodontic Primer for Preventing Enamel Demineralization around Bracket (불소를 함유한 교정용 접착제의 브라켓 주변 법랑질 탈회 예방 효과)

  • Jang, Hayoung;Kim, Jongbin;Kim, Jongsoo;Oh, Sohee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.4
    • /
    • pp.412-418
    • /
    • 2017
  • During orthodontic treatment, formation of white spot lesions (WSLs) around brackets has long been recognized as a potential risk. This study performed to investigate effect of preventing enamel demineralization and remineralization by application of fluoride-containing orthodontic primer. Fifty extracted bovine incisors teeth were randomly allocated to 3 groups: (I) Non-preparation specimens, (II) Application of Light Bond$^{TM}$ as fluoride containing orthodontic primer, (III) Application of Transbond$^{TM}$ XT Primer as traditional orthodontic primer without fluoride. Each group is demineralized under artificial carious solution. The demineralization pattern was evaluated using a Q-ray view, Vickers hardness test and polarized light microscope. The remained primer was calculated as 35 - 50%. The highest surface microhardness was shown on Light Bond$^{TM}$ surface. There were statistically significant differences in Vickers microhardness number between adjacent areas of Light Bond$^{TM}$ and non-prepared area. There was almost no demineralization of the enamel surface under the Light Bond$^{TM}$. At the adjacent site of Light Bond$^{TM}$, the shallow caries pattern and remineralization appearance were also observed. These results suggest that the use of fluoride-containing primers may be useful for bracket attachment to reduce enamel demineralization during orthodontic treatment.

Assessment of Bond Characteristics between New and Old Concrete in Various Mixtures and Joint Conditions (배합 및 접합면 처리에 따른 신·구 콘크리트의 부착특성 평가)

  • Cho, Byeong-Du;Kim, Sang-Hyun;Jeon, Se-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.507-515
    • /
    • 2014
  • Although the construction joints of a concrete structure are properly treated with some measures, leakage has frequently occurred. A series of tests on the bond characteristics between new and old concrete were carried out in this study, assuming that the leakage at the construction joints has certain relationship with the bond of concrete. To assess the bond characteristics under various conditions, a number of specimens were made that have an interface between new and old concrete and bond strength, flexural strength and splitting tensile strength were measured. Main test variables are type and amount of mineral admixtures, treatment method of the interface and type of waterstops. In addition, the effects of placing interval between the concrete and of the age of the strength tests were investigated. The test results showed a slightly increased bond strength when applying mineral admixtures, which can be attributed to the interface filled with the calcium silicate hydrate that is formed by pozzolanic reaction. On the other hand, the bond strength was higher when the interface was treated rough and dry, and the roughness of a waterstop affected the bond capacity of the waterstop. Also, an assessment is required that considers the type of strength test because the bond strength varied according to the test methods.

An Effect of Steel Corrosion on Bond Stress-slip Relationship under Repeated Loading (반복하중하의 부착응력-슬립 관계에 미치는 철근 부식의 영향)

  • Kim, Chul-Min;Park, Jong-Bum;Chang, Sung-Pil;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.179-186
    • /
    • 2010
  • The bond between steel and concrete in reinforced concrete members is essential to resist external load, but the bond mechanism in reinforced concrete beams deteriorated by steel corrosion has not been clearly known yet. Most existing researches have dealt with the bond behavior of corroded steel under monotonic loading, but scarce are researches dealing with bond behavior of corroded steel under repeated loading. This study includes the experimental investigation on the bond behavior with respect to the various degrees of steel corrosion under repeated loading. According to the test results, the bond strength of corroded steel under monotonic loading increases as the rate of steel corrosion increases unless the splitting crack occurs. The slip versus number of load cycles relation was found to be approximately linear in double logarithmic scale, not only in specimens without steel corrosion but also in specimens with steel corrosion. The test results also show that the steel corrosion does not negatively affect the bond strength of corroded steel after repeated loading unless the splitting crack occurs. But the fatigue life decreases sharply after splitting crack occurs. This research will be helpful for the realistic durability design and condition assessment of reinforced concrete structures.

THE CYTOTOXIC EFFECTS OF GLASS-IONOMER CEMENT LINERS ON FIBROBLASTS IN HUMAN PULP (Glass-ionomer Cement 이장재의 세포독성에 관한 연구)

  • Na, Young-Min;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.261-276
    • /
    • 1993
  • The purpose of this study was to evaluate for the cytotoxicity of glass-ionomer cement liners(GC liningcement, Ketac-bond, Vitrebond and Fuji lining LC) on the fibroblasts cultured from human pulp. The fibroblasts were cultured in DMEM-10% FBS medium. The measurement of pH, succinate dehydrogenase (SDH) activity test and $^{51}Chromium$ release test were performed. Viable cell count and $^{14}C$-leucine incorporation rate were evaluated following culture time of 2, 4 and 6 days. The results of this study were as follows : 1. The pH in all cements was to be neutralized as time elapsed, and Fuji lining LC was the lowest pH value among them. 2. SDH activity was more inhibited in GC lining cement and Vitrebond than Ketac-bond and Fuji lining LC with the setting process, and GC lining cement and Ketac-bond were reduced after 5 minute's setting and then elevated as time elapsed. 3. In SDH activity test following exposure time, the activity in Vitrebond, GC lining cement and Fuji lining LC was inhibited with increased exposure time, but it was fairly constant in Ketac-bond. 4. Overall the liquid component was more inhibited than the powder component of glass-ionomer cement in SDH activity test. 5. In $^{51}Cr$-release test, Fuji lining LC was the most released of all the cements tested and followed by : Vitrebond, Ketac-bond, GC lining cement. 6. In viable cell count, the number of cells increased as the culture day proceeded in Ketac-bond, but they decreased in GC lining cement. Fuji lining LC was only observed after 2 days culture and there was not observed the whole culture days in Vitrebond. 7. In $^{14}C$-leucine incorporation rate test, protein synthesis was decreased with the number of culture days in GC lining cement, Vitrebond and Fuji lining LC, but it was followed that of control in Ketacbond.

  • PDF

Bond Behavior between Parent Concrete and Carbon Fiber Mesh (탄소섬유메쉬와 콘크리트의 부착거동)

  • Yun, Hyun-Do;Sung, Soo-Yong;Oh, Jae-Hyuk;Seo, Soo-Yeon;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.769-777
    • /
    • 2003
  • The strengthening of concrete structures in situ with externally bonded carbon fiber is increasingly being used for repair and rehabilitation of existing structures. Because carbon fiber is attractive for this application due to its good tensile strength, resistances to corrosion, and low weight. Generally bond strength and behavior between concrete and carbon fiber mesh(CFM) is very important, because of enhancing bond of CFM. Therefore if bond strength is sufficient, it will be expect to enhance reinforcement effect. Unless sufficient, expect not to enhance reinforcement effect, because of occuring bond failure between concrete and CFM. In this study, the bond strength and load-displacement response of CFM to the concrete by the direct pull-out test(the tensile-shear test method) were investigated using the experiment and the finite element method analysis with ABAQUS. The key variables of the experiment are the location of clip, number of clips and thickness of cover mortar. The general results indicate that the clip anchorage technique for increasing bond strength with CFM appear to be effective to maintain the good post-failure behavior.

Identification of Fatty Acids in the Oils of Pine Nuts by GC-MS of Their Picolinyl Esters and 4,4-dimethyloxazoline Derivatives in Combination with Silver-Ion Chromatography

  • Kim, Seong-Jin;Woo, Hyo-Kyeng;Seo, Min-Young;Joh, Yong-Goe
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.222-244
    • /
    • 2002
  • A mixture of methyl ester derivatives of fatty acids from the oils of pine nuts was well resolved to five fractions differing by degree of unsaturation by silver ion solid-phase extraction column chromatography ($Ag^{+}$-SEC). Polyunsaturated fatty acid with non-methylene interrupted conjugated double bond (NMiDB) radical held more strongly to silver ions in the column than methylene interrupted conjugated double bond (MiDB) one when they had the same number of double bonds. Although both the picolinyl ester and DMOX derivative provided clear mass ion species powerful enough to elucidate the structure of the polyunsaturated fatty acid (PUFA) with NMiDB and/or methylene interrupted conjugated double bond (MiDB) radical in the oils, the picolinyl ester of PUFA with NMiDB radical did not provide a cluster of mass ions neighboring diagnostic mass ions induced by the double bond in the proximal to the carboxyl group. However, the DMOX derivative of PUFA with NMiDB group as well as MiDB showed abundant mass ion species differing by gaps of 12 amu, which made it possible with greater ease to locate the double bonds in the molecule. The oil contained $C_{18:2{\omega}6}$ (46.2 %) and $C_{18:1{\omega}9}$ (25.4 %) as main components, and considerable amounts of PUFAs with NMiDB radical such as ${\Delta}^{5.\;9.\;12}-C_{18:3}$ (16.0 %), ${\Delta}^{5.\;9}-C_{18:2}$ (2.3 %) and ${\Delta}^{5.\;11.\;14}-C_{20:3}$ (0.8 %).

The Impacts of the Recasting of Non-precious Metal Alloy for Porcelain Fused to Metal Crowns on Strength (도재소부금관용 비귀금속 합금의 반복주조가 강도에 미치는 영향)

  • Chung, Hee-Sun;Oh, Gyung-Jae
    • Journal of Technologic Dentistry
    • /
    • v.31 no.3
    • /
    • pp.27-34
    • /
    • 2009
  • This study compared and analyzed changes to the mechanical characteristics to nonprecious metal alloy for porcelain fused to metal crowns when it's repetitively used without the addition of new alloy. Metal samples were made with the Verabond V nonprecious metal alloy. Those samples to measure tensile and yield strength were made in the standardized design(ISO 22674), those to measure bond strength in the $25mm{\times}3mm{\times}0.5mm$ format, and those to measure hardness in the $10mm{\times}10mm{\times}1mm$ format. A ceramic to measure bond strength was made at the center of the metal sample in the length of $8{\ss}{\AE}$ by using Noritaker Super Porcelain EX-3. Ten samples were prepared for one, three and five repetitions of casting each. The test results were as follows: 1. The more casting was repeated, the more significantly tensile strength dropped. 2. The more casting was repeated, the more significantly yield strength dropped. 3. Repetitive casting didn't cause significant changes to bond strength. 4. The Vickers hardness significantly fell with increasing repetitions of casting. There were no changes to bond strength observed with the increasing number of repeating casting. But tensile strength, yield strength, and Vickers hardness decreased. Those results indicate that repeated casting can affect durability and that careful attention should be paid by avoiding repetitive use or excessive increase of uses when no new alloy is added.

  • PDF