• Title/Summary/Keyword: Boltzmann distribution

Search Result 112, Processing Time 0.02 seconds

THE STUDY OF HEAT TRANSFER IN THERMOPILE THERMOMETER

  • Youn, ChongHo;Fujita, Toshinori;Kawashima, Kenji;Kagawa, Toshiharu;Ichida, Syuji;Tomohito, Hayashi
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.387-390
    • /
    • 2001
  • Thermopile thermometer can measure the temperature of an object without attaching the object. It measures the temperature by receiving the radiation energy from objects. The idea of this is from the law of Stefan-Boltzmann. In the past it was not used well because the size was big and the cost was too expensive. But, In these days it can be used many field because the size become smaller and advantage of cost by using micro machine technology. However, The accuracy of measuring is not better than electric type. So we want to improve the accuracy of sensor by analyzing the heat transfer of the thermopile. To analyze temperature distribution in the thermopile sensor, we use the FEM software which is named ANSYS. The conduction and radiation heat transfer is considered to simulate the temperature distribution and time response inside of the sensor.

  • PDF

Drift Velocities and Distribution Function for Electrons $SF_6$-Ar Mixtures Gas ($SF_6$-Ar 혼합기체의 전자이동속도와 전자분포함수)

  • Kim, Sang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2008.11b
    • /
    • pp.85-88
    • /
    • 2008
  • Drift velocities and Distribution Function for electrons in $SF_6$-Ar mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range $30{\sim}300[Td]$ by a two term Boltzmann equation and by a Monte Carlo simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6$-Ar mixtures were measured by time-of-flight method, The results show that the deduced electron drift velocities agree reasonably well with theoretical for a rang of E/N values The results simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF

Electron Energy Distribution Function in $CF_4$ Gas used by MCS-BE Algorithm ($CF_4$ 기체의 MCS-BEq 알고리즘에 의한 전자에너지 분포함수)

  • Park, Jae-Sae;Kim, Sang-Nam;Kim, Il-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.102-105
    • /
    • 2002
  • In this paper, the electron transport characteristics in $CF_4$ has been analysed over the E/N range 1${\sim}$300 [Td] by a two-term approximation Boltzmann equation method and by a Monte Carlo simulation. The motion has been calculated to give swarm parameters for the electron drift velocity, longitudinal diffusion coefficient, the ratio of the diffusion coefficient to the mobility, electron ionization and attachment coefficients, effective ionization coefficient, mean energy, collision frequency and the electron energy distribution function. The swarm parameter from the swarm study are expected to serve as a critical test of current theories of low energy electron scattering by atoms and molecules, in particular, as well as crucial information for quantitative simulations of weakly ionized plasmas.

  • PDF

Nano Particle Charging Characteristics of Aerosol Charge Neutralizers (에어로졸 중화기의 나노 입자 하전 특성)

  • Ji, Jun-Ho;Bae, Swi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1489-1497
    • /
    • 2003
  • Aerosol charge neutralizers with various radioactive sources have been used to apply an equilibrium charge distribution to aerosols of unknown charge distribution. However, the performance of aerosol charge neutralizers is not well known, especially for highly charged particles. Measurements of highly charged particles are needed in air cleaning devices, e.g. electrostatic precipitator, bag filter with a pre-charger, and electrical cyclone. In this study, the particle charging characteristics of two different aerosol charge neutralizers were experimentally investigated for singly charged monodisperse particles and highly charged polydisperse particles. One has radioactive source of $^{85}$ Kr (beta source, 2 mCi) and the other has $^{210}$ Po (alpha source, 0,5 mCi). The air flow rate passing through each aerosol charge neutralizer was changed from 0.2 to 2.5 L/min. The results show that the charge distribution of singly charged monodisperse particles passing through the $^{85}$ Kr aerosol charge neutralizer is well agreed with the Boltzmann equilibrium charge distribution at an air flow rate of 0.3 L/min, However, it deviates from the equilibrium charge distribution when the air flow rates are 0.6, 1,0, and 1,5 L/min, On the other hands, the effect of air flow rate is insignificant for the $^{210}$ Po aerosol charge neutralizer. The non-equilibrium character in charge distribution of highly charged polydisperse particles passing through the $^{85}$ Kr aerosol charge neutralizer greatly depends on the air flow rate, however it is insensitive to the air flow rate for the $^{210}$ Po aerosol charge neutralizer.

Nonequilibrium Molecular Dynamics Simulation Study of Kinetic Energy and Velocity Distribution Profiles of Argon Gases in Shock Waves (충격파 내에서 형성되는 아르곤 기체의 운동 에너지 분포와 속도 분포에 대한 비평형 분자동역학 모의실험 연구)

  • Hwang, Hyon-Seok;Lee, Ji-Hye;Kwon, Chan-Ho;Kim, Hong-Lae;Park, Min-Kyu;Kim, Seong-Shik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.147-153
    • /
    • 2011
  • A series of nonequilibrium molecular dynamics(NEMD) simulations are performed to investigate the kinetic energy and velocity distributions of molecules in shock waves. In the simulations, argon molecules are used as a medium gas through which shock waves are propagating. The kinetic energy distribution profiles reveals that as a strong shock wave whose Mach number is 27.1 is applied, 39.6% of argon molecules inside the shock wave have larger kinetic energy than molecular ionization energy. This indicates that an application of a strong shock wave to argon gas can give rise to an intense light. The velocity distribution profiles in z direction along which shock waves propagate clearly represent two Maxwell-Boltzmann distributions of molecular velocities in two equilibrium regions and one bimodal velocity distribution profile that is attributed to a nonequilibrium region. The peak appearing in the directional temperature in z direction is discussed on a basis of the bimodal velocity distribution in the nonequilibrium region.

Study on the electron transport properties in $SF_6$+He mixtures gas used by MCS-BE ($SF_6$+He 혼합기체의 MCS-BE에 의한 전자수송계수 연구)

  • Kim, Sang-Nam;Seo, Sang-Hyeon;Ha, Sung-Chul;Yu, Heoi-Young;Song, Byung-Doo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11a
    • /
    • pp.16-19
    • /
    • 1999
  • This paper describes the electron transport characteristics in $SF_6$+He gas calculated for range of E/N values from $50{\sim}700[Td]$ by the Monte Carlo simulation and Boltzmann equation method using a set of electron collision cross sections determined by the authors and the values of electron swarm parameters are obtained by TOF method. The results gained that the values of the electron swarm parameters such as the electron drift velocity, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients agree with the experimental and theoretical for a range of E/N.

  • PDF

Analysis of Electron Energy Distribution Function and Transport Characteristic in SiH$_4$ Gas Plasma by MCS-BE Method (MCS-BE법을 이용한 SiH$_4$가스 프라즈마중의 전자에너지분포함수와 수송특성해석)

  • 이형윤;하성철;유회영;김상남;임상원;문기석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.154-159
    • /
    • 1997
  • This paper describes the electron transport characteristic in SiH$_4$ gas calculated for range of E/N values from 0.5~300(Td) by the Monte Calro simulation and Boltzmann equation method using a set of electron collision cross sections determined by the authors and the values of electron swarm parameters are obtained for TOF method. The results gained that the value of an electron swarm parameter such as the electron drift velocity, the electron ionization coefficients longitudinal and transverse diffusion coefficients, characteristics energy agree with thee experimental and theoretical for a range of E/N. The electron energy distributions function were analysed in monosilane at EN : 30, 50(Td) for a case of equilibrium region in the mean electron energy. The validity of the results obtained has been confirmed by a TOF method.

  • PDF

Energy Distribution Function for Electrons in $SF_6$+He mixtures gas used by MCS-BEq (MCS-BEq에 의한 $SF_6$-He 혼합기체의 에너지 분포함수)

  • Seong, Nak-Jin;Kim, Sang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.41-44
    • /
    • 2004
  • This paper describes the electron transport characteristics in $SF_6$-He gas calculated for range of E/N values from 50${\sim}$700[Td] by the Monte Carlo simulation(MCS) and Boltzmann equation(BEq) method using a set of electron collision cross sections determined by the authors and the values of electron swarm parameters are obtained by TOF method. The results gained that the values of the electron swarm parameters such as the electron drift velocity. the electron ionization or attachment coefficients. longitudinal and transverse diffusion coefficients agree with the experimental and theoretical for a range of E/N.

  • PDF

Management of Discon tinuous Reconstruction In the Evolution Stage of Kinetic Scheme

  • Ohwada Taku;Kobayashi Seijiro
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.189-190
    • /
    • 2003
  • A New kinetic scheme for the compressible Navier-Stokes equations is developed. While the conventional approach, such as KFVS scheme, employs the splitting algorithm and computes the numerical flux on the basis of the collisionless equation, the present approach employs the splitting algorithm in the evaluation of the numerical flux, where the collision effect is explicitly taken into account. However, the initial condition employed in the computation is slightly different from the conventional Chapman-Enskog NS distribution function. The present study also reveals the background of the existing kinetic schemes. such as the KFVS scheme and Gas-Kinetic BGK scheme.

  • PDF

A Numerical Analysis of Rarefied Flow of Cylinder Using FDDO (FDDO를 이용한 실린더를 지나는 희박기체의 해석)

  • Ahn M. Y.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.138-144
    • /
    • 1998
  • The BGK equation, which is the kinetic model equation of Boltzmann equation, is solved using FDDO(finite difference with the discrete-ordinate method) to compute the rarefied flow of monatomic gas. Using reduced velocity distribution and discrete ordinate method, the scalar equation is transformed into a system of hyperbolic equations. High resolution ENO(Essentially Non-Oscillatory) scheme based on Harten-Yee's MFA(Modified Flux Approach) method with Strang-type explicit time integration is applied to solve the system equations. The calculated results are well compared with the experimental density field of NACA0012 airfoil, validating the developed computer code. Next. the computed results of circular cylinder flow for various Knudsen numbers are compared with the DSMC(Direct Simulation Monte Carlo) results by Vogenitz et al. The present scheme is found to be useful and efficient far the analysis of two-dimensional rarefied gas flows, especially in the transitional flow regime, when compared with the DSMC method.

  • PDF