• Title/Summary/Keyword: Bolted Joint

Search Result 157, Processing Time 0.027 seconds

Simplified model to study the dynamic behaviour of a bolted joint and its self loosening

  • Ksentini, Olfa;Combes, Bertrand;Abbes, Mohamed Slim;Daidie, Alain;Haddar, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.639-654
    • /
    • 2015
  • Bolted joints are essential elements of mechanical structures and metal constructions. Although their static behaviour is fairly well known, their dynamic behaviour due to shocks and vibrations has been less studied, because of the large size of the finite element models needed for a detailed simulation. This work presents four different simplified models suitable for studying the dynamic behaviour of an elementary bolted joint. Three of them include contact elements to allow sliding of the screw head and the nut on the assembled parts, and the last one allows rotation between screw and nut. A penalty approach based on the Coulomb friction model is used to model contact. The results show that these models effectively represent the dynamic behaviour, with different accuracy depending on the model details. The last model simulates the self loosening of a bolt subjected to transversal vibrations.

Experimental study on a new type of assembly bolted end-plate connection

  • Li, Shufeng;Li, Qingning;Jiang, Haotian;Zhang, Hao;Yan, Lei;Jiang, Weishan
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.463-471
    • /
    • 2018
  • The bolted end-plate beam-column connections have been widely used in steel structure and composite structure because of its excellent seismic performance. In this paper, the end-plate bolted connection is applied in the concrete structure, A new-type of fabricated beam-column connections with end-plates is presented, and steel plate hoop is used to replace stirrups in the node core area. To study the seismic behavior of the joint, seven specimens are tested by pseudo-static test. The experimental results show that the new type of assembly node has good ductility and energy dissipation capacity. Besides, under the restraint effect of the high-strength stirrup, the width of the web crack is effectively controlled. In addition, based on the analysis of the factors affecting the shear capacity of the node core area, the formula of shear capacity of the core area of the node is proposed, and the theoretical values of the formula are consistent with the experimental value.

A Study on Self-Healing Bolted Joints using Shape Memory Alloy (형상기억합금을 이용한 자가치유 볼트접합부 시스템에 관한 연구)

  • Chang, Ha-Joo;Lee, Chang-Gil;Park, Seung-Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.629-636
    • /
    • 2011
  • This paper describes the smart structural system that uses smart materials for real-time monitoring and active control of bolted joints in steel structures. The impedance-based structural health monitoring (SHM) techniques, which utilize the electro-mechanical coupling property of piezoelectric materials, was used to detect loose bolts in bolted joints. By monitoring the measured electrical impedance and comparing it with the measured baseline, a bolt loosening damage was detected. The damage was evaluated quantitatively using the damage metrics in conductance signature with respect to the healthy states. When loosening damage was detected in the bolted joint, the external heater actuated the shape memory alloy (SMA) washer. Then the heated SMA washer expanded axially and adjusted the bolt tension to restore the lost torque. An experiment was conducted by integrating the piezoelectric-material-based SHM function and the SMA-based active control function on a bolted joint, after which the performance of thesmart self-healing joint system was investigated.

Structural Behavior of Bolted Lap-Joint Connection in the Pultruded FRP Structural Members (볼트로 겹침이음된 펄트루젼 복합재 접합부의 구조적 거동)

  • Lee, Young-Geun;Shin, Kwang-Yeoul;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • In this paper, we present the result of an experimental investigation pertaining to the structural behavior of bolted lap-joint connection of pultruded fiber reinforced plastic structural shapes. In the experimental investigation, in order to find the mechanical property of the material, tension and shear tests on the pultruded structural composite specimen are conducted prior to the investigation on the structural behavior of bolted lap-joint connection of the member. Based on the result, number of bolts, type of placement and location of bolt are determined to be a test variable. Three different types of experimental specimens are prepared. Tensile load is applied through the center of the specimen with lap-joint connection and the structural behavior and failure mode of the test specimens with respect to the tensile load increment are investigated. As a result, it is found that most of the failure mode at the lap-joint connection is shear failure mode. Consequently, it is also found that the data obtained through this experimental program could be used for the structure connection design as a basis.

Finite Element Modeling for Static and Dynamic Analysis of Structures with Bolted Joints (볼트결합부를 포함한 구조물의 정적 및 동적 해석을 위한 유한요소 모델링)

  • Gwon, Yeong-Du;Gu, Nam-Seo;Kim, Seong-Yun;Jo, Min-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.667-676
    • /
    • 2002
  • Many studies on the finite element modeling for bolted joints have proceeded, but the structures with bolted joints are complicated in shape and it is difficult to find out the characteristics according to joint condition. Usually, experimental methods have been used for bolted joint analysis. A reliable and practical finite element modeling technique for structure with bolted joints is very important for engineers in industry. In this study, three kinds of model are presented; a detailed model, a practical model and a simple model. The detailed model is modeled by using 3-D solid element and gap element, and the practical model is modeled by using shell element (a portion of bolt head) and beam element (a portion of bolt body), the simple model is modeled by simplifying practical model without using gap elements. Among these models, the simple model has the least degree of freedom and show the effect of memory reduction of 59%, when compared with the detailed model.

Prediction of Failure Behavior for Carbon Fiber Reinforced Composite Bolted Joints using Progressive Failure Analysis (점진적 파손해석을 이용한 탄소섬유강화 복합재료 볼트 조인트의 파손거동 예측)

  • Yoon, Donghyun;Kim, Sangdeok;Kim, Jaehoon;Doh, Youngdae
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.101-107
    • /
    • 2021
  • Composite structures have components and joints. Theses connections or joints can be potentially weak points in the structure. The failure mode of the composite bolted joint is designed as a bearing failure mode for structural safety. The load-displacement relation exhibits bearing failure mode shows a nonlinear behavior after the initial failure and progressive failure behavior. In order to accurately predict the failure behavior of composite bolted joints, this study modified the shear damage variable calculation process in the existing progressive failure analysis model. The results of the bearing stress-bearing strain of the composite bolted joint were predicted using the modified progressive failure analysis model, and the modified model was verified through comparison with the previous progressive analysis model.

Experimental study on standard and innovative bolted end-plate beam-to-beam joints under bending

  • Katula, Levente;Dunai, Laszlo
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1423-1450
    • /
    • 2015
  • The paper presents the details and results of an experimental study on bolted end-plate joints of industrial type steel building frames. The investigated joints are commonly used in Lindab-Astron industrial buildings and are optimized for manufacturing, erection and durability. The aim of the research was to provide an experimental background for the design model development by studying load-bearing capacity of joints, bolt force distribution, and end-plate deformations. Because of the special joint details, (i.e., joints with four bolts in one bolt-row and HammerHead arrangements), the Eurocode 3 standardized component model had to be improved and extended. The experimental programme included six different end-plate and bolt arrangements and covered sixteen specimens. The steel grade of test specimens was S355, the bolt diameter M20, whereas the bolt grade was 8.8 and 10.9 for the two series. The end-plate thickness varied between 12 mm and 24 mm. The specimens were investigated under pure bending conditions using a four-point-bending test arrangement. In all tests the typical displacements and the bolt force distribution were measured. The end-plate plastic deformations were measured after the tests by an automatic measuring device. The measured data were presented and evaluated by the moment-bolt-row force and moment-distance from centre of compression diagrams and by the deformed end-plate surfaces. From the results the typical failure modes and the joint behaviour were specified and presented. Furthermore the influence of the end-plate thickness and the pretension of the bolts on the behaviour of bolted joints were analysed.

Behaviour and design of high-strength steel beam-to-column joints

  • Li, Dongxu;Uy, Brian;Wang, Jia
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.303-317
    • /
    • 2019
  • This paper presents a finite element model for predicting the behaviour of high-strength steel bolted beam-to-column joints under monotonic loading. The developed numerical model considers the effects of material nonlinearities and geometric nonlinearities. The accuracy of the developed model is examined by comparing the predicted results with independent experimental results. It is demonstrated that the proposed model accurately predicts the ultimate flexural resistances and moment-rotation curves for high-strength steel bolted beam-to-column joints. Mechanical performance of three joint configurations with various design details is examined. A parametric study is carried out to investigate the effects of key design parameters on the behaviour of bolted beam-to-column joints with double-extended endplates. The plastic flexural capacities of the beam-to-column joints from the experimental programme and numerical analysis are compared with the current codes of practice. It is found that the initial stiffness and plastic flexural resistance of the high-strength steel beam-to-column joints are overestimated. Proper modifications need to be conducted to ensure the current analytical method can be safely used for the bolted beam-to-column joints with high-performance materials.

A Study on the Strength of Metal-Composite Hybrid Joints (금속-복합재 하이브리드 체결부의 강도 특성 연구)

  • Jung, Jae-Woo;Song, Min-Hwan;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.94-97
    • /
    • 2005
  • The strength of aluminum 7075 and carbon composite hybrid joints was studied for adhesive, bolt, and the adhesive-bolt combined joints. Several hybrid joint specimens were tested to get the failure load and modes for three types of the joints. Adhesive Cytec EA9394S was used for aluminum and carbon bonding. Failure load of the adhesive-bolt combined joint was 94 % of the sum of the failure load of the separately bonded and bolted joints. Hybrid joint also showed more stable failure behavior than the simple adhesive or bolted joint.

  • PDF

Estimation of Contact Stress Distribution Factor in Bolt Joint with variable Fastening torque (체결력에 따른 볼트 결합부의 접촉응력분포계수 평가)

  • 김종규
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.73-79
    • /
    • 1999
  • Most of mechanical structures are combined of substructures such as beams and/or plates. There are few systems with unibody structures but are many systems with united body structures. Generally the dynamic a nalysis of whole structures is performed under alternation load. In the structure design, the analysis of each bolted joint is more important than others for zero severity. This paper presents the analysis method of contact stress distribution factor in the bolted joint with variable fastening torque on joints in the structure. At first, a static vibration test was performed to find out a nominal stress of bolt jointed plates from the relationship between natural frequency and nominal stress. Then a contact stress was computed at contact point between bolt and plate in the structure. It is believed that the proposed method has promisiong implications for safer design with index of contact stress distribution factor and has merits for cost-down and saving time at the beginning of vehicle development.

  • PDF