• Title/Summary/Keyword: Boiling phenomena

Search Result 89, Processing Time 0.03 seconds

Experimental Observations of Boiling and Flow Evolution in a Coiled Tube

  • Ye, P.;Peng, X.F.;Wu, H.L.;Meng, M.;Gong, Y. Eric
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • A sequence of visually experimental observations was conducted to investigate the flow boiling and two-phase flow in a coiled tube. Different boiling modes and bubble dynamical evolutions were identified for better recognizing the phenomena and understanding the two-phase flow evolution and heat transfer mechanisms. The dissolved gases and remained vapor would serve as foreign nucleation sites, and together with the effect of buoyancy, centrifugal force and liquid flow, these also induce very different flow boiling nucleation, boiling modes, bubble dynamical behavior, and further the boiling heat transfer performance. Bubbly flow, plug flow, slug flow, stratified/wavy flow and annular flow were observed during the boiling process in the coiled tube. Particularly the effects of flow reconstructing and thermal non-equilibrium release in the bends were noted and discussed with the physical understanding. Coupled with the effects of the buoyancy, centrifugal force and inertia or momentum ratio of the two fluids, the flow reconstructing and thermal non-equilibrium release effects have critical importance for flow pattern in the bends and flow evolution in next straight sections.

BRIEF REVIEW OF LATEST DIRECT NUMERICAL SIMULATION ON POOL AND FILM BOILING

  • Kunugi, Tomoaki
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.847-854
    • /
    • 2012
  • Despite extensive research efforts, the mechanism of the nucleate boiling phenomena is still not clear. A direct numerical simulation of the boiling phenomena is one of the promising approaches in order to clarify its heat transfer characteristics and discuss their mechanism. Therefore, many DNS procedures have been developed based on recent highly advancing computer technologies. This brief review focuses on the state of the art in direct numerical simulation of the pool boiling phenomena over the past two decades. In this review, the fundamentals of the boiling phenomena and the bubble departure and micro-layer models are briefly introduced, and then the numerical procedures for tracking or capturing interface/surface shape such as the front tracking method, level set method, volume of fluid treatments, and other methods (Lattice Boltzmann method, phase-field method and so on) are briefly reviewed.

The Elementary School Teachers' Thoughts of the Classification Criteria for Evaporation and Boiling Concept in the Heating and Non- Heating Conditions (가열과 비가열 상황에서 증발과 끓음 개념에 대한 초등교사들의 분류 기준에 대한 생각)

  • Paik, Seoung-Hey;Kim, Yang Ah
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.4
    • /
    • pp.289-295
    • /
    • 2015
  • The purpose of this study was to survey the elementary school teachers' thoughts of the classification criteria for evaporation and boiling concept in the heating and non-heating conditions. For this purpose, we conducted a survey and interviews with 37 elementary school teachers. When the heating conditions were presented, many teachers thought evaporation phenomena as boiling. In opposite condition, many teachers thought boiling phenomena as evaporation. This means that teachers‘ thought of boiling phenomena was connected with heating conditions and evaporation phenomena with non-heating conditions. In addition, the classification criteria to distinguish evaporation and boiling phenomena depending on the heating and non-heating conditions were not coherent. In this study, we suggested that a various cases beyond the typical case must be presented in the textbooks and teaching in order to avoid confusion of thoughts related to evaporation and boiling concepts.

Boiling CHF phenomena in water and FC-72

  • Park, Jongdoc;Fukuda, Katsuya;Liu, Qiusheng
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.581-588
    • /
    • 2014
  • Extensive researches toward pool boiling characteristics have been widely investigated. However, the correct understanding of its boiling crisis by Critical Heat Flux (CHF) phenomenon during steady and transient heat transfer as a fundamental database for designing heat generation systems is still need to be clarified. The pool boiling CHFs were investigated to clarify the generalized phenomena of transition to film boiling at transient condition. The CHFs were measured on 1.0 mm diameter horizontal cylinder of platinum for exponential heat generation rates with various periods for saturated liquids at atmospheric pressure. The incipience of boiling processes was completely different depending on pre-pressurization. Also, the dependence of pre-pressure in transient CHFs changed due to the wettability of boiling liquids. The trend of typical CHFs were clearly divided into the first, second and third groups for long, short and intermediate periods, respectively. By the effect of pre-pressurization, the boiling incipience mechanism was replaced from that by active cavities entraining vapor to that by the HSN in originally flooded cavies.

NUMERICAL SIMULATION OF BOILING PHENOMENA USING A LEVEL-SET METHOD (Level-Set 방법을 이용한 비등현상 해석)

  • Son, G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.218-222
    • /
    • 2009
  • A level-set (LS) method is presented for computation of boiling phenomena which involve liquid-vapor interfaces that evolve, merge and break up in time, the flow and temperature fields influenced by the interfacial motion, and the microlayer that forms between the solid and the vapor phase near the wall. The LS formulation for tracking the phase interfaces is modified to include the effects of phase change on the liquid-vapor interface and contact angle on the liquid-vapor-solid interline. The LS method can calculate an interface curvature accurately by using a smooth distance function. Also, it is straightforward to implement for two-phase flows in complex geometries. The numerical method is applied for analysis of nucleate boiling on a horizontal surface and film boiling on a horizontal cylinder.

  • PDF

Direct-contact heat transfer of single droplets in dispersed flow film boiling: Experiment and model assessment

  • Park, Junseok;Kim, Hyungdae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2464-2476
    • /
    • 2021
  • Direct-contact heat transfer of a single saturated droplet upon colliding with a heated wall in the regime of film boiling was experimentally investigated using high-resolution infrared thermometry technique. This technique provides transient local wall heat flux distributions during the entire collision period. In addition, various physical parameters relevant to the mechanistic modelling of these phenomena can be measured. The obtained results show that when single droplets dynamically collide with a heated surface during film boiling above the Leidenfrost point temperature, typically determined by droplet collision dynamics without considering thermal interactions, small spots of high heat flux due to localized wetting during the collision appear as increasing Wen. A systematic comparison revealed that existing theoretical models do not consider these observed physical phenomena and have lacks in accurately predicting the amount of direct-contact heat transfer. The necessity of developing an improved model to account for the effects of local wetting during the direct-contact heat transfer process is emphasized.

Condensing Characteristics of Pin-finned Surfaces on Pool Boiling in FC-72 (풀비등에서 소형 사각기둥핀 배열형상에 따른 FC-72의 응축특성)

  • Karng, Sarng-Woo;Kim, Seo-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.7
    • /
    • pp.498-504
    • /
    • 2011
  • As the electronic industry rapidly develops, the heat flux from state-of-the-art electronics increases up to $10^6\;W/m^2$. For this reason, the development of a new cooling technology for high heat flux applications is strongly required. Recently, some cooling technologies using boiling and condensation of working fluid are being adopted to overcome such a technical barrier. In the present study, a smooth boiling surface ($14{\times}14\;mm^2$) was immersed in FC-72 and its vapor was condensed by four different types of condensation surfaces ($30{\times}30\;mm^2$ base). The condensing surfaces were composed of a smooth surface and $1{\times}1\;mm^2$ pin-finned surfaces of 2 mm height with 0.3, 0.5 and 1 mm array spacing. Boiling and condensing characteristics were investigated in detail on their combinations of boiling and condensing surfaces. For a smooth boiling surface the results obtained showed that the pin-finned condensing surface with 1 mm array spacing yielded the best performance and the smooth condensation surface did the worst. Furthermore hysteresis phenomena could be reduced by using enhanced condensing surfaces.

Study on Heat Transfer Performance Change According to Long-term Operation Using Carbon Nanotube and Graphene Nanofluid (탄소나노튜브 및 그래핀 나노유체 사용시 장기운전에 따른 열전달성능 변화에 대한 연구)

  • Kim, Young-Hun;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.1
    • /
    • pp.15-23
    • /
    • 2017
  • Critical heat flux refers to the sudden decrease in boiling heat transfer coefficient between a heated surface and fluid, which occurs when the phase of the fluid near the heated surface changes from liquid to vapor. For this reason, critical heat flux is an important factor for determining the maximum limit and safety of a boiling heat transfer. Recently, it is reported that the nanofluid is used as a working fluid for the critical heat flux enhancement. However, it could be occurred nano-flouling phenomena on the heat transfer surface due to nanoparticles deposition, when the nanofluid is applied in a heat transfer system. In this study, we experimentally carried out the effects of the nano-fouling phenomena in oxidized multi-wall carbon nanotube and oxidized graphene nanofluid systems. It was found that the boiling heat flux decreased by hourly 0.04 and $0.03kW/m^2$, also the boiling heat transfer coefficient decreased by hourly 11.56 and $10.72W/m^2{\cdot}K$, respectively, in the thermal fluid system using oxidized multi-wall carbon nanotube or oxidized graphene nanofluid.

Analysis of Concepts Related to Explanations of Evaporation and Boiling in Secondary School Science Textbooks (중등 과학교과서에서 증발, 끓음의 설명에 제시된 개념간의 관련 정도 분석)

  • Paik, Seong-Hey;Jeong, Ae-Kyung;Ko, Young-Hwan
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.3
    • /
    • pp.429-441
    • /
    • 2004
  • This study was to examine the concepts using to explain evaporation and boiling in secondary school science textbooks developed in 6th and 7th science curriculum. The types of explanations were compared with maps represented the concepts relationships divided into middle and high schools, 6th and 7th curriculum, and subjects and chapters to find explanation diversity. The difference of explanations related to evaporation and boiling concepts was found in the school levels and subjects. There were few relationships between the main concepts of evaporation phenomena and those of boiling phenomena.

MAJOR THERMAL-HYDRAULIC PHENOMENA FOUND DURING ATLAS LBLOCA REFLOOD TESTS FOR AN ADVANCED PRESSURIZED WATER REACTOR APR1400

  • Park, Hyun-Sik;Choi, Ki-Yong;Cho, Seok;Kang, Kyoung-Ho;Kim, Yeon-Sik
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.257-270
    • /
    • 2011
  • A set of reflood tests has been performed using ATLAS, which is a thermal-hydraulic integral effect test facility for the pressurized water reactors of APR1400 and OPR1000. Several important phenomena were observed during the ATLAS LBLOCA reflood tests, including core quenching, down-comer boiling, ECC bypass, and steam binding. The present paper discusses those four topics based on the LB-CL-11 test, which is a best-estimate simulation of the LBLOCA reflood phase for APR1400 using ATLAS. Both homogeneous bottom quenching and inhomogeneous top quenching were observed for a uniform radial power profile during the LB-CL-11 test. From the observation of the down-comer boiling phenomena during the LB-CL-11 test, it was found that the measured void fraction in the lower down-comer region was relatively smaller than that estimated from the RELAP5 code, which predicted an unrealistically higher void generation and magnified the downcomer boiling effect for APR1400. The direct ECC bypass was the dominant ECC bypass mechanism throughout the test even though sweep-out occurred during the earlier period. The ECC bypass fractions were between 0.2 and 0.6 during the later test period. The steam binding phenomena was observed, and its effect on the collapsed water levels of the core and down-comer was discussed.