• Title/Summary/Keyword: Boiling number

Search Result 165, Processing Time 0.031 seconds

Study on Correlation of Droplet Flow Rate and Film Boiling Heat Transfer in Spray Cooling (액적 유량과 분무냉각 막비등 열전달의 상관관계에 관한 연구)

  • Yun, Seung-Min;Kim, Yeung-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.335-340
    • /
    • 2007
  • A new correlation between the Nusselt number based on modified heat transfer coefficient and Reynold number based on droplet-flow-rate was developed for the experimental data. The modified heat transfer coefficient was defined as ratio of wall heat flux to droplet subcooling. In the previous reports, the local heat flux of spray cooling in the film boiling region was experimentally investigated for the water spray region of $D_{max} = 0.0007{\sim}0.03m^3/(m^2s)$ . In the region near the stagnation point of spray flow, a new heat transfer correlation is recommended which shows good predictions for the water spray region of $D_x{\le}0.01m^3/(m^2s)$.

Study on Boiling Heat Transfer of FC-77 in Spray Cooling (FC-77의 분무냉각 비등열전달 특성에 관한 연구)

  • Kim, Yeung-Chan
    • Journal of ILASS-Korea
    • /
    • v.12 no.4
    • /
    • pp.179-184
    • /
    • 2007
  • The boiling heat transfer was experimentally investigated for the FC-77 sprays impacting a square heated test surface in a downward direction. Full cone spray nozzles were employed for the spray cooling experiment, and experiments were made under the test conditions of $Q=3.32{\times}10^{-6}{\sim}2.30{\times}10^{-5}\;m^3/s$, ${\Delta}T_{sub}=20{\sim}70^{\circ}C$. Also, heat transfer measurements were made using the copper block of $10{\times}10\;mm^2$ test area heated by nine cartridge heater. From the experimental results, correlation between the Nusselt number and Reynolds number based on droplet-flow-rate was developed. The correlation shows good predictions with ${\pm}30%$ error for FC-77.

  • PDF

Experimental Study on Boiling Heat Transfer of PF-5052 in Spray Cooling (PF-5052의 분무냉각 비등열전달에 관한 실험적 연구)

  • Kim, Yeung-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.938-944
    • /
    • 2008
  • The boiling heat transfer was experimentally investigated for the PF-5052 sprays impacting a square heated test surface in a downward direction. Full cone spray nozzles were employed for the spray cooling experiment, and experiments were made under the test conditions of Q=$3.32{\time}10^{-6}{\sim}\;12.98{\time}10^{-6}m^3/s$, ${\Delta}T_{sub}=5{\sim}25^{\circ}C$. Also, heat transfer measurements were made using the copper block of $10{\time}10mm^2$ test area heated by nine cartridge heater. From the experimental results, correlation between the Nusselt number and Reynolds number based on droplet-flow-rate was developed. The correlation shows good predictions with ${\pm}30$ % error for PF-5052.

Effect of Convex Surface Curvature on the Onset of Nucleate Boiling of Subcooled Fluid Flow in Vertical Concentric Annuli (수직 동심 환형관 내부유동에서 과냉 유체의 비등 시작 열유속에 관한 표면 볼록 곡률의 영향)

  • Byun, Jung-Hwan;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1513-1520
    • /
    • 2002
  • Effect of Convex Surface Curvature on the Onset of Nucleate Boiling of Subcooled Fluid Flow in Vertical Concentric Annuli An experimental study has been carried out to investigate the effect of the transverse convex surface curvature of core tubes on heat transfer in concentric annular tubes. Water is used as the working fluid. Three annuli having a different radius of the inner cores, Ri=3.18mm, 6.35mm, and 12.70mm with a fixed ratio of Ri/Ro=0.5 are used over a range of the Reynolds number between about 40,000 and 80,000. The inner cores are made of smooth stainless steel tubes and heated electrically to provide constant heat fluxes throughout the whole length of each test section. Experimental result shows that heat flux values on the onset of nucleate boiling of the smaller inner diameter model is much higher than that of the larger size test model.

Hydrodynamic effects of heater lengths on pool boiling critical heat flux (히터 길이가 수조비등 임계열유속에 미치는 수력학적 영향)

  • Su Cheong Park;Do Yeon Kim;Seon Ho Choi;Chang Hoon Lee;Younghun Lim;Chi Young Lee;Yeon Won Lee;Dong In Yu
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.67-73
    • /
    • 2023
  • In the study, pool boing critical heat flux (CHF) was experimentally investigated depending on the length of heaters. A smooth silicon oxide surfaces are used as the boiling surfaces. As the results of pool boiling experiments based on distilled water in ambient pressure condition, the CHF decreased as the length of the heater increased. By the high speed imaging, it was shown that the number of vapor columns increased as the length of the heater increased. Comparing the number of vapor columns and the CHF according to the heater length, the change in the CHF according to the heater length was analyzed based on the hydrodynamic instability.

Experiments on Time Dependent Film Boiling on a Sphere

  • Ounpanich Bancha;Pomprapha Temsiri;Archakositt Urith;Nilsuwankosit Sunchai
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.403-406
    • /
    • 2002
  • A number of the experiments on the phenomenon in which the thermal energy was transferred from a hot sphere to the surrounding water through the film boiling process had been conducted. As the sphere only carried the thermal energy associated with its initially high temperature but did not contain any other thermal source, the film boiling was only driven by the decreasing temperature of the sphere and, thus, was time dependent. The results from the experiments showed that the temperature of the sphere was slowly decreased in the beginning. This corresponded to the period in which the sphere was penetrating the water surface. Later, when the sphere was fully submerged and the transition film boiling was observed over the whole surface, the temperature of the sphere was decreased relatively much faster. In the last stage, the temperature of the sphere was again slowly decreased. This was considered caused by the relatively low temperature of the sphere, which reduced and later ceased the film boiling process. In addition, the estimation of the departure rate of the steam bubbles from the film layer was also correlated for the experiments.

  • PDF

Effect of Surface Roughness on Two-Phase Flow Heat Transfer by Confined Liquid Impinging Jet (액체 충돌제트의 표면조도변화에 따른 이상유동 열전달 특성)

  • Yim, Seong-Hwan;Shin, Chang-Hwan;Cho, Hyung-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.714-721
    • /
    • 2005
  • The water jet impingement cooling with boiling is one of the techniques to remove heat from high heat flux equipments. The configuration of surface roughness is one obvious condition of affecting the performance on heat transfer in nucleate boiling, The present study investigates the water jet impinging single-phase convection and nucleate boiling heat transfer for the effect of surface roughness to enhance the heat transfer in free surface and submerged jet. The distributions of the averaged wall temperature as well as the boiling curves are discussed. Jet velocities are varied from 0.65 to 1.7 m/s. Surface roughness by sand blast and sand paper varies from 0.3 to 2.51 ${\mu}m$ and cavity shapes on surface are semi-circle and v-shape, respectively The results showed that higher velocity of the jet caused the boiling incipience to be delayed more. The incipient boiling and heat transfer increase with increasing surface roughness due to a large number of cavities of uniform size.

The Characteristics of Convective Heat Transfer in Non Boiling Vertical Downard Flow (비비등 수직 하향 유동의 대류 열전달 특성)

  • Lee, D.S.;Kim, J.G.;Yang, H.J.;Oh, Y.K.;Cha, K.O.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.118-123
    • /
    • 2000
  • This experimental study was conducted to figure out the characteristics of convective heat transfer in non boiling vertical downward flow with polymer additives. This experiment was studied in 26mm diameter, 800mm heating length and $1{\times}10^5W/m^2$ heat flux. The polymer concentration ranged from 0PPM to 500PPM with corresponding from Reynolds number $3.3{\times}10^4$ to $6.8{\times}10^4$ in non boiling vertical downward flow. Experimental results show that the characteristics of convective heat transfer was a strong function of polymer concentration and it has decreased with increasing the polymer concentration in non boiling vertical downward flow.

  • PDF

Study on the characteristics of nucleate boiling heat transfer with changing of surface roughness (표면거칠기의 변화에 따른 핵비등열전달의 특성에 관한 연구)

  • 김춘식;정대인;배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.64-78
    • /
    • 1983
  • In nucleate boiling, bubbles are created by the expansion of entrapped gas or vapor at small cavities in the surface of heat transfer. Namely, surface roughness is the important factor of heat transfer. This paper deals with the characteristics of boiling curve according to surface roughness. Freon-113 is used as the experimental fluid. The results are as follows; 1. In the case of the same as "q=C$\Delta$T$^{n}$ ", the lower numberical index "n", the larger heat transfer coefficient and the lower wall superheat "$\Delta$T" is obtained for the rougher surface. 2. In the working of every kind of heat transfer sruface with boiling, improvement of capabilities of heat transfer can be devised by adding suitable roughness on the heat transfer surface. 3. When the metal nets of moderate mesh number are established, the capabilities of heat transfer can be improved in evaporation of liquid in vessels. But in the case that the sucession of bubbles in checked by using the nets which are too tight, the generation of bubbles union decreases critical heat flux. decreases critical heat flux.

  • PDF

Experimental Study on Effect of Water-based Iron(III) Oxide Nanofluid on Minimum Film Boiling Point During Quenching of Highly Heated Test Specimen (고온 시편의 급랭 시 산화철 나노유체가 최소막비등점에 미치는 영향에 대한 실험적 연구)

  • Jeong, Chan Seok;Hwang, Gyeong Seop;Lee, Chi Young
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.128-136
    • /
    • 2020
  • In the present experimental study, the effect of water-based iron(III) oxide nanofluid on the MFB(Minimum Film Boiling) point during quenching was investigated. As the highly heated test specimen, the cylindrical stainless steel rod was used, and as the test fluids, the water-based iron(III) oxide nanofluids of 0.001 and 0.01 vol% concentrations were prepared with the pure water. To examine the effect of location in the test specimen, the thermocouples were installed at the bottom and middle of wall, and center in the test specimen. Through a series of experiments, the experimental data about the influences of nanofluid concentrations, the number of repeated experiments, and locations in the test specimen on the reaching time to MFB point, MFBT(Minimum Film Boiling Temperature), and MHF(Minimum Heat Flux) were obtained. As a result, with increasing the concentration of nanofluid and the number of repeated experiments, the reaching time to MFB point was reduced, but the MFBT and MHF were increased. In addition, it was found that the effect of water-based iron(III) oxide nanofluid on the MFB point at the bottom of wall in the test specimen was observed to be greater than that at the middle of wall and center. In the present experimental ranges, as compared with the pure water, the water-based iron(III) oxide nanofluid showed that the maximum reduction of reaching time to MFB point was about 53.6%, and the maximum enhancements of MFBT and MHF were about 31.1% and 73.4%, respectively.