• Title/Summary/Keyword: Bogie Frame

Search Result 133, Processing Time 0.029 seconds

Evaluation of Structural Integrity of Three-axle Bogie Frame used in Railway Freight Cars (평판화차에 사용되는 3축 대차의 구조 안전성 평가)

  • Kang, Seung-Gu;Shin, Kwang-Bok;Im, Jae-Moon;Park, Jung-Joon;Jeon, Seung-Gie
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.436-440
    • /
    • 2017
  • This study evaluated the design and structural integrity of a three-axle bogie frame in a railway freight car through a numerical analysis and an experimental evaluation. A three-axle bogie frame, which supports the weight of the car body and load, is required to transport heavier cargo because two-axle vehicles have structural limitations. Therefore, this study performed a structural analysis and static load tests to evaluate the design and structural integrity of a three-axle bogie frame. The results obtained from the numerical analysis were compared to those of the experiments. For the bogie frame used in the experiments, a failure evaluation was performed using non-destructive methods. The numerical analysis and experimental evaluation were satisfactory for the structural integrity evaluation.

Defect Evaluation for Weld Specimen of Bogie Using Infrared Thermography (적외선 서모그래피를 이용한 대차 용접시편의 결함 평가)

  • Kwon, Seok Jin;Seo, Jung Won;Kim, Jae Chul;Jun, Hyun Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.619-625
    • /
    • 2015
  • There is a large interest to find reliable and automatic methods for crack detection and quantification in the railway bogie frame. The non-destructive inspection of railway bogie frame has been performed by ultrasonic and magnetic particle testing in general inspection. The magnetic particle method has been utilized in the defect inspection of the bogie frame but the grinding process is required before inspection and the dust is developed resulting from the processing. The objective of this paper is to apply the inspection method of bogie frame using infra-red thermography. The infra-red thermography system using the excitation of eddy current was performed for the defect evaluation of weld specimen inserted artificial defects. The result shows that the infra-red thermography method can detect the surface and inner defects in weld specimen for bogie frame.

A Experimental Study for Health Monitoring of Bogie Frame for Next Generation High-Speed Train (차세대 고속열차용 대차프레임의 건전성 모니터링을 위한 실험적 연구)

  • Ko, Jae-Ha;Kim, Sang-Soo;Choi, Sung-Hoon;Kim, Seog-Won;Chun, Heoung-Jae
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2684-2690
    • /
    • 2011
  • The bogie is one of the most important components in a railway vehicle. So a lot of study has been carried out for safety and reliability of the bogie frame in experimental and simulation. In this paper, Presents an experimental study on health monitoring of next generation high-speed train bogie frame. The ultimate objective of this paper is to estimate the sensor located for health monitoring of bogie. The result from this study might be used essential data in order to construct the next generation high speed train bogie frame health monitoring.

  • PDF

A Comparision on Structure Analysis and Load Test of Driving Bogie for Electrical Multiple Unit (전동차 구동대차의 구조해석 및 하중시험 비교 고찰)

  • Kim W.K.;Yoon S.C;Kwon S.T.;Park O.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.404-409
    • /
    • 2005
  • This paper describes the result of structure analysis and load test for bogie frame. The purpose of the analysis and test is to evaluate an safety which body structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load. Bogie system consists of bogie frame, suspensions, wheel-sets, braking system and transmission system. Among these component, the bogie frame is most significant component subjected to the vehicle and passenger loads. The evaluation method is used the JIS E 4207 specification throughout the FEM analysis and static load test. The analysis and test results have been very safety and stable for design load conditions.

  • PDF

Strength Evaluation of Bogie by Loading Test (하중시험에 의한 대차의 강도 평가)

  • Yoon Sung-Cheol;Kwon Sung-Tae;Kim Myung-Rong;Lee Kang-Won
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.622-627
    • /
    • 2004
  • This paper describes the result of load test of bogie frame. The purpose of test is to evaluate an safety which bogie frame shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load. Bogie system consist of bogie frame, suspensions, wheel-sets, brake system and transmission system. Among these component, the bogie frame is the most significant component subjected to the vehicle and passenger loads. The evaluation method is used the JIS E 4207 specification throughout the static load test. The test results have been very safety and stable for design load conditions.

  • PDF

Evaluation of Total Serviceable Life of Bogie Frame of Electric Multiple Unit by Dynamic Strain Measurement (실동응력 측정을 통한 전동차 대차프레임의 내구수명 평가)

  • Kim, Seung-Sub;Han, Seong-Uk;Park, Geun-Soo;Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.277-282
    • /
    • 2011
  • Bogie frame is typical safety part of railway vehicle. Total serviceable life of bogie frame will be evaluated by Cumulative Damage Approach Method that is defined by dynamic strain measurement during revenue service under the actual track conditions. As a result of the standardization process developed in British Standard Institution, BS 7608 defines for fatigue design and test method of steel structure by fatigue test results over the long period. This paper evaluates the total serviceable life applying BS 7608 for the bogie frame of Electric Multiple Unit to verify structural safety of the bogie frame.

  • PDF

Experimental Study on the Bogie Frame of Tilting Railway Vehicle for Assessment of Structural Safety (한국형 틸팅열차용 주행장치 프레임의 구조적 안전성 평가에 관한 시험적 연구)

  • Kim, Jung-Seok;Kim, Nam-Po;Seo, Sung-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.166-173
    • /
    • 2006
  • This paper investigated strength of a bogie frame for Korean tilting train that is being developed in KRRI. In this study, static load tests based on Japanese Industrial Standard (JIS) were performed. In order to simulate vertical and lateral components generated by tilting link mechanism, four hydraulic actuators were used. The eight load cases such as vertical, lateral, traction, braking and driving gear loads were applied for evaluation of the strength of bogie frame. The stresses measured at the stress concentration points were assessed using Goodman diagram. From the experimental results, structural safety of the bogie frame could be ensured.

An Analytical Study on Fatigue Strength Evaluation Procedure for the Bogie Frame of Tilting Railway Vehicle (틸팅대차 프레임에 대한 피로강도평가 절차에 관한 해석적 연구)

  • Kim Nam-Po;Kim Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.321-329
    • /
    • 2005
  • This paper has established the strength evaluation procedure of the bogie frame for the Korean tilting train that is being developed in KRRI, In order to establish the strength evaluation procedure, firstly, the loading conditions imposed on the tilting train were investigated. In addition, the static and fatigue strength of the bogie frame has been evaluated. In order to derive the dynamic loads according to the carbody tilting, the load redistribution effect by carbody tilting, the unbalanced lateral acceleration effect by high-speed curving and the tilting actuator force effect have been considered. Multi-body dynamic analyses have been carried out to evaluate the tilting load cases and the strength analysis has been performed by finite element analyses. From this study, the structural safety of the bogie frame could be ensured.

A Study on the Shape Optimal Design of a Bogie Frame for the Reduction of its Weight (대차프레임의 중량감소를 위한 형상최적설계에 관한 연구)

  • 조우석;최경호;박정호;안찬우;김현수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.616-619
    • /
    • 2000
  • The optimum design of a structure requires to determine economical member size and shape of a structure which satisfies the design conditions and functions. In this study, it is attempted to minimize a dead weight of the bogie frame. Therefore, shape optimization is performed for a bolster rib at first and then size optimization for the thickness of top and bottom plate. For the efficient reduction of a weight of a bogie frame, various ellipses centered at a centroid of a bolster rib are made and tried. For the shape optimization, a major axis and an eccentricity of an ellipse are chosen as design variables. From the numerical results of shape and size optimization of a bogie frame, it is known that the weight can be reduced up to 12.476 Y4717.21 kg) with displacement and stress constraints.

  • PDF