• 제목/요약/키워드: Body segments

검색결과 218건 처리시간 0.026초

충돌해석용 유아 인체모델 개발에 관한 연구 (A Study on the Development of Child Human Model for Crashworthiness Analysis)

  • 김헌영;김상범;김준식;이인혁;이진희
    • 한국정밀공학회지
    • /
    • 제21권12호
    • /
    • pp.182-191
    • /
    • 2004
  • This study is focused on the development of a child human model, which is composed of skin, skeleton, joints and muscle, etc. The dimension of child outer skin is referred to anthropometric data from KRISS (Korea Research Institute of Standards and Science). The positions of joint and mass properties of body segments are calculated from ATB(Articulated Total Body) program, GEBOD. The properties of bones and muscles are obtained by the way of scaling from adult human model. To verify the developed human model, ROM simulation and sled test is conducted. Developed human model can be effectively applied to the evaluation of human injury in crash situation and development of child restraint system. The explicit finite element program $PAM-CRASH^TM$ was used to simulate six-year old child human model.

충돌안전도 해석을 위한 유아 인체모델 개발에 관한 연구 (A study on the 3Yr. old child human model for crashworthiness simulation)

  • 김헌영;김상범
    • 산업기술연구
    • /
    • 제22권B호
    • /
    • pp.45-50
    • /
    • 2002
  • Airbag systems have improved the occupant safety in reducing the injuries of driver and passenger during collisions. They have occasionally caused fatalities; especially to small occupant and children. Recent airbag related fatalities of children have raised serious concerns on how to evaluate the safety of children in various crash environments. This paper present the development of the 3-year-old human model. Child human model is composed of skin, skeleton and joints. The positions of joint and mass properties of body segments are calculated from ARB(Ariticulated Rigid Body) program GEBOD. To verify the developed human model, ROM simulation and OOP simulations are conducted.

  • PDF

착좌시 하지 동작의 생체역학적 모델 (A biomechanical model of lower extremity for seated operators)

  • 황규성;이동춘;최재호
    • 대한인간공학회지
    • /
    • 제11권1호
    • /
    • pp.81-92
    • /
    • 1992
  • A two-dimensional static biochemical model of lower extremity in the seated posture was developed to assess muscular activities of lower extremity required for a variety of foot pedal operations. We found that the double linear optimization method that has been used for modelling articulated body segments does no predict the forces generated by biarticular muscles reasonably, so the revised double linear optimization scheme was used to consider the synergistic effects of biarticular muscles in our model, assuming that the muscle forces are distributed proportionally based on their physiological cross sectional area. The model incorporated three rigid body se- gments with six muscles to represnet lower extremity. For the model validation, three male subjects performed the experiments in which EMG activities of six lower extremity muscles were measured. Predicted muscle forces were compare with the corresponding EMG amplitudes and it showed no statistical difference. The model being developed can be used to design and assess pedal and foot-related tool design.

  • PDF

성인여성의 피부온감수성의 부위차에 대해서 (Distribution of Warm Sensitivity over Woman Skin)

  • 이욱자
    • 한국생활과학회지
    • /
    • 제7권2호
    • /
    • pp.93-101
    • /
    • 1998
  • Distribution of warm sensitivity over woman skin was investigated using Thurstone's paired comparisons method on 10 healthy female students. An iron probe 20mm in diameter and 108mm in length was used for the simulator, the temperature of which was adjusted at $40{\pm}0$. $5^{\circ}C$ in a warm water bath. Twenty-two parts on the left side of the body were examined. Warm sensitivity was significantly different among the body segments, that is, higher on the face and trunk and lower on the upper and lower extremities. The correlation coefficients between warm sensitivity and the warm spots were significant in posterior.

  • PDF

한국인 조종사의 대표적 인체모형군 생성 (Formulation of Human Manikin Models Representative of Korean Male Pilots)

  • 이종선;송영웅
    • 대한인간공학회지
    • /
    • 제21권1호
    • /
    • pp.15-26
    • /
    • 2002
  • The anthropometric characteristics of the intended user population are most important parameters in the equipment and workplace layout design, particularly in the airplane cockpit design. Because human body is composed of multi-dimensional body segments, single 'average' or 'extreme' manikin is not sufficient in computer-aided design(CAD) environments. To overcome this limitation, we constructed a manikin group representing Korean Male pilot population. First, we identified 16 anthropometric variables which are important parameters in the evaluation of reach, visibility, and clearance. And we found their correlations and conducted a factor analysis. Four common factors were extracted in the factor analysis. The first one was related with length dimensions, the second was with the arm reach, the third was with the sitting height, and the last was with breadth-depth dimensions. Finally, 17 manikins were constructed and presented in the CAD prototype.

PCB Soldering 공정의 작업 인터페이스 변경에 따른 작업난이도 및 생산성 향상 (Productivity and Task Difficulty Improvement of PCB Soldering Process by Changing Work Interface)

  • 이성군;박범
    • 대한인간공학회지
    • /
    • 제29권6호
    • /
    • pp.943-949
    • /
    • 2010
  • When PCB soldering is performed with microscope due to the electronic components' microminiaturization, workers' awkward upper body postures and difficulties being in focus among lens, object and eyes are one of reasons for productivity decline. The object of this study is to investigate the level of difficulties of work and the extent of productivity improvement by changing work interfaces from the work using microscope to the work using LCD monitor. Independent variables was usage of microscope and image system and dependent variables were upper body segments including neck, shoulder, back, and waist, task convenience and eye fatigue. The Visual Analogue Scale (10cm) was used for questionnaire and one way ANOVA (two levels) and two sample t-test were conducted. In addition, RULA rating was conducted for working postures. The result showed that interface changes of LCD monitor, suggested by productivity comparison per one Man Hour, highly contributed to work convenience and productivity improvement.

재활훈련을 위한 관성센서 기반 동작 분석 시스템 구현 (Implementation of Motion Analysis System based on Inertial Measurement Units for Rehabilitation Purposes)

  • 강신일;조재성;임도형;이종실;김인영
    • 재활복지공학회논문지
    • /
    • 제7권2호
    • /
    • pp.47-54
    • /
    • 2013
  • 본 논문은 몸 전체의 움직임을 측정하고 분석할 수 있는 관성센서 기반 모션 캡처링 시스템에 관한 것이다. 본 시스템 구현을 위해 자이로스코프, 가속도계 및 지자계 신호를 이용한 자세 방위 측정장치 모듈을 개발하였으며, 다수의 모듈을 환자의 분절에 부착하고 공간상에서 각 분절의 방위각을 계산하여 3차원 모션캡처를 수행하였다. 또한 재활과 관련된 많은 응용에 있어 중요한 생체역학 측정값인 신체 분절간의 관절각을 추출하는 알고리즘을 제안하였다. 개발한 자세 방위 측정장치 모듈의 성능을 평가하기 위하여 3차원 공간상의 변위 및 방위를 밀리미터 해상도로 제공할 수 있는 Vicon을 참조 측정 시스템으로 이용하였으며, 2.56도의 평균 제곱근 오차를 얻을 수 있었다. 실험 결과 본 연구에서 개발한 시스템은 뇌졸중 후 회복단계 동안 사지 및 보행 동작을 실시간으로 분석, 제공함으로서 재활의 효과, 난이도 조절 및 피드백 요소를 제공할 수 있을 것으로 판단된다.

  • PDF

승객 상해의 감소를 위한 승용차 조향주의 최적설계 (An Optimum Design of a Steering Column to Minimize the Injury of a Passenger)

  • 박영선;이주영;박경진
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.33-44
    • /
    • 1995
  • As the occupant safety receives more attention from automobile industries. protection systems have been developed quite well. Developed protection systems must be evaluated through real tests in crash environment Since the real tests are extremely expensive. computer simulations are replaced for some prediction of the real test In the computer simulation. it is very crucial to express the real environment precisely in the modeling precess. The energy absorbing(EA) steering system has a very important rote in vehicle crashes because the occupant can hit the system directly. In this study. the EA steering system is modeled precisely. analyzed for the safely and designed by an optimization technology. First. the EA steering system is disassembled by parts and modeled by segments and joints. The segments are modeled by rigid bodies in motion and they have resistances in contact. Spring-damper elements and force-deflection curves are utilized to represent the joints. The body block test is cal lied out to validate. the modeling. When the test results are not enough for the detailed modeling. the differences between tests and simulations are minimized to calculate unknown parameters using optimization. The established model is applied to a crash simulation of a full-car model and tuned again. After the modeling is finished. components of the steering system are designed by an optimization algorithm. In the optimization process. the compound injury of a driver is defined and minimized to determine the chracteristics of the components. The second. order approximation algorithm has been adopted for the optimization.

  • PDF

아이스하키 스위프 샷(Sweep shot) 동작의 상지의 협응 형태 (Coordination Pattern of Upper Limb of Sweep Shot Movement in Ice Hockey)

  • 최지영;이의린
    • 한국운동역학회지
    • /
    • 제17권4호
    • /
    • pp.169-179
    • /
    • 2007
  • The purpose of this study was to investigate the relations between the segments of the body and to qualitatively analyze coordination pattern of joints and segments during Sweep Shot movement in Ice Hockey, by utilizing coordination variables was angle vs. angle plots. By the utilization the three dimensional anatomical angle cinematography, the angles of individual joint and segment according to sweep shot in ice hockey. The subjects of this study were five professional ice hockey players. The reflective makers were attached on anatomical boundary line of body. For the movement analysis three dimensional cinematographical method(APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVIEW 6.1 graphical programming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and ice hockey stick were defined. The three dimensional anatomical angular displacement and coordination pattern of trunk and Upper limb(shoulder-elbow, elbow-wrist linked system) showed important role of sweep shot in ice hockey. As the result of this paper, for the successful movement of sweep shot in ice hockey, it is most important role of coordination pattern of trunk-shoulder, shoulder-elbow and elbow-wrist. specially turnk movememt as a proximal segment. Coordination pattern of Upper Limb(upperarm-forearm-hand) of Sweep Shot movement in Ice Hockey that utilizes coordination variables seems to be one of useful research direction to understand basic control mechanisms of Ice hockey sweep shooting linked system skill. this study result showed flexion-extension, adduction-abduction and internal-external rotation of trunk are important role of power and shooting direction coordination pattern of upper Limb of Sweep Shot movement in Ice Hockey.

골절정복겸자가 하악골 골절정복에 미치는 효과에 관한 광탄성 연구 (A PHOTOELASTIC STUDY ON EFFECTS OF BONE REDUCTION FORCEPS ON MANDIBULAR FRACTURE REDUCTION)

  • 박진형;최병호;류태민;허진영
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제28권6호
    • /
    • pp.464-471
    • /
    • 2002
  • The purpose of this study was to evaluate the stress patterns within fractured mandibles generated by reduction forceps and to determine the optimal position of the reduction forcep. Twenty-seven mandibular models were fabricated using a photoelastic resin. Each of the three sets of mandible models prepared was osteotomized according to one of three different fracture types(symphysis, parasymphysis and body fractures). After reducing the cut segments, a reduction forcep was placed into different engagement holes to compress the segments. Photoelastic stress analysis was used to visualize the stress patterns within the fractured mandiblular models generated by the reduction forcep. In the case of symphysis or parasymphysis fractures, an optimum distribution of stress over the fracture site was achieved when placing the reduction forcep more than 12.5mm on either side of the fracture line between the midway level bisecting the mandible and 5mm below the level. In the case of body fractures, optimum stress distribution was achieved when the reduction forcep was placed more than 15mm from the fracture line on the midway level. In conclusion, a correct use of reduction forceps helps to provide a precise threedimensional reduction for mandibular fractures.