• Title/Summary/Keyword: Body pressure distribution

Search Result 281, Processing Time 0.029 seconds

Seat Pressure Distribution Characteristics During 1 Hour Sitting in Office Workers With and Without Chronic Low Back Pain

  • Akkarakittichoke, Nipaporn;Janwantanakul, Prawit
    • Safety and Health at Work
    • /
    • v.8 no.2
    • /
    • pp.212-219
    • /
    • 2017
  • Background: Low back pain (LBP) is a major problem for office workers. Individuals adopting poor postures during prolonged sitting have a considerably increased risk of experiencing LBP. This study aimed to investigate seat pressure distribution characteristics, i.e., average pressure, peak pressure ratio, frequency of postural shift, and body perceived discomfort (BPD), during 1 hour of sitting among office workers with and without chronic LBP. Methods: Forty-six participants (chronic LBP = 23, control = 23) typed a standardized text passage at a computer work station for an hour. A seat pressure mat device was used to collect the seat pressure distribution data. Body discomfort was assessed using the Body Perceived Discomfort scale. Results: Office workers with chronic LBP sat significantly more asymmetrically than their healthy counterparts. During 1-hour sitting, all workers appeared to assume slumped sitting postures after 20 minutes of sitting. Healthy workers had significantly more frequent postural shifts than chronic LBP workers during prolonged sitting. Conclusion: Different sitting characteristics between healthy and chronic LBP participants during 1 hour of sitting were found, including symmetry of sitting posture and frequency of postural shift. Further research should examine the roles of these sitting characteristics on the development of LBP.

The Foot Pressure Change Caused by Functional Leg Length Having an Effect on the Foot Temperature (기능적인 하지길이 차이에 따른 족저압 변화가 족부체열에 미치는 영향)

  • Kim, Minju;Kim, Juyeon;Lee, Hyewon;Yim, Juyeon;Ha, Hyunjin;An, Jinho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.1 no.2
    • /
    • pp.37-46
    • /
    • 2013
  • Purpose : The purpose of the research was to analyze foot pressure, foot temperature, and correlation between foot pressure and foot temperature to grasp impact on foot pressure and body temperature distribution chart depending on functional difference of leg length. Method : After measuring leg length, put 15 students whose functional difference of leg length was over 10mm to difference group and 15 students whose functional difference of leg length was under 5mm to normal group and categorize soles of foot into 6 sections of hallux head, 1st metatarsal head, 2-4 metatarsal head, 5 metatarsal head, lateral heel, and then measure by foot pressure analyzer to analyze characteristic of pressure distribution and classify into front of the lower leg, back of the lower leg, soles of foot and measure by body temperature analyzer to analyze by checking body temperature. Result : Weight difference depending on foot pressure and body temperature was bigger when functional difference of leg length was bigger, and it could be confirmed that foot pressure and body temperature of short leg side were higher than those of short leg side. Thus, if difference exists in leg length, weight load on short leg side increases which results in higher foot pressure and body temperature, therefore enabling an assumption that mechanical problem will occur in short leg. Conclusion : When functional leg length inequality, weight bearing and pressure was getting high as a result, temperature was getting high in short leg.

Investigation of the body distribution of load pressure and virtual wear design of short pants harnesses in flying condition (플라잉 상태에서 바지형태의 하네스에 대한 하중압력 분포 측정 및 가상착의 적용)

  • Kwon, MiYeon
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.23 no.3
    • /
    • pp.11-21
    • /
    • 2021
  • Virtual reality is currently mainly used in games, but is starting to be applied as a variety of media fields, such as broadcasting and film. Virtual reality provides more fun than reality, and can provide new experiences in areas that cannot be experienced in reality due to the constraints of time, space, and environment. In particular, as the social non-contact arena has increased due to COVID-19, it is being applied to education, health, and medical industries. The contents are further expanding into design and military fields. Therefore, the purpose of this study was to observe the change in distribution of load and pressure felt by the body in the flying state while wearing a short pants harness, which are mainly used in the game and entertainment industry. In the experiment, the average pressure in the flying state was measured by attaching a pressure sensor to the back and front of a human mannequin. As a result, it was confirmed that the load concentrated on the waist in the flying state was 44 N, with a pressure of 1353 kPa. The pressure distribution was concentrated in front of the center of gravity, and was measured was at 98% by the pressure sensors, with an average pressure value of approximately 15 kPa, and a pressure value of approximately 12 kPa at the back, which was measured at 67% by the pressure sensor. The results of the load and pressure distribution measurement are presented as fundamental data to improve the wearability and comfort of harnesses in the future, and are compared to actual measured pressure values by analyzing the clothing pressure in flight through virtual wear of harnesses through the CLO 3D program.

Formulation for Reliability-based Fatigue Assessment of Car Body for High Speed Train Passing Through Tunnels (터널을 통과하는 고속열차 차체의 피로신뢰성 평가의 정식화)

  • Seo Sung-Il;Min Oak-Key;Park Choon-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.348-353
    • /
    • 2005
  • In designing the structures of railway rolling stocks, deterministic methods associated with the concept of a safety factor have been traditionally used. The deterministic approaches based on the mean values of applied loads and material properties have been used as safety verification for the design of rolling-stock car body structures. The uncertainties in the applied loading for the high speed train and the strength of new materials in the rolling stocks require the application of probabilistic approaches to ensure fatigue safety in the desired system. Pressure loadings acting on the car body when the train passes through tunnels show reflected pressure waves for high-speed trains and they may cause a fatigue failure in vehicle bodies. Use of new material technology as body structures also introduces uncertainties in the material strength. A probabilistic approach is more adaptable in designing reliable structures when the pressure waves from the tunnels pounds and new material technology is adopted. In this paper, it is proposed that a fatigue design and assessment method based on a reliability which deals with the loading variations on a railway vehicle due to the pressure reflected in tunnels and the strength variations of material. Equation for the fatigue reliability index has been formulated to calculate the reliability assessment of a vehicle body under fluctuating pressure loadings in a tunnel. Considered in this formulation are the pressure distribution characteristics, the fatigue strength distribution characteristics, and the concept of stress-transfer functions due to the pressure loading.

Body Pressure Distribution and Textile Surface Deformation Measurement for Quantification of Automotive Seat Design Attributes (운전자의 체압 분포 및 시트변형에 대한 정량화 측정시스템)

  • Kwon, Yeong-Eun;Kim, Yun-Young;Lee, Yong-Goo;Lee, Dongkyu;Kwon, Ohwon;Kang, Shin-Won;Lee, Kang-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.397-402
    • /
    • 2018
  • Proper seat design is critical to the safety, comfort, and ergonomics of automotive driver's seats. To ensure effective seat design, quantitative methods should be used to evaluate the characteristics of automotive seats. This paper presents a system that is capable of simultaneously monitoring body pressure distribution and surface deformation in a textile material. In this study, a textile-based capacitive sensor was used to detect the body pressure distribution in an automotive seat. In addition, a strain gauge sensor was used to detect the degree of curvature deformation due to high-pressure points. The textile-based capacitive sensor was fabricated from the conductive fabric and a polyurethane insulator with a high signal-to-noise ratio. The strain gauge sensor was attached on the guiding film to maximize the effect of its deformation due to bending. Ten pressure sensors were placed symmetrically in the hip area and six strain gauge sensors were distributed on both sides of the seat cushion. A readout circuit monitored the absolute and relative values from the sensors in realtime, and the results were displayed as a color map. Moreover, we verified the proposed system for quantifying the body pressure and fabric deformation by studying 18 participants who performed three predefined postures. The proposed system showed desirable results and is expected to improve seat safety and comfort when applied to the design of various seat types. Moreover, the proposed system will provide analytical criteria in the design and durability testing of automotive seats.

Investigation of the body distribution of load pressure and virtual wear design according to the corset type harness (코르셋 타입 하네스의 신체 하중압력 분포 측정 및 가상착의 적용)

  • Kwon, MiYeon;Choi, Sola;Kim, Juhea
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.23 no.3
    • /
    • pp.1-10
    • /
    • 2021
  • Harnesses are used in a variety of industries, such as rescue operations, medicine, and entertainment. However, conventional harnesses have problems as they are uncomfortable to wear and causes continuous pain. Therefore, in this study, the load and pressure applied to the body in the flying state when using a conventional harness were measured in real time and the distribution change was observed. Load and pressure were measured using a modified corset harness, a pressure sensor, and a human mannequin to measure the maximum and average pressure on the waist. As a result, it was confirmed that the load concentrated on the waist in the flying state was 104 N, and the pressure was applied to the left and right sides was 800 kPa or greater. The pressure distribution showed a pressure of 3-45 kPa in 73% in all measurable pressures. The results of the load and pressure distribution are presented as basic data for improving the wearability and reducing the discomfort of harnesses in the future, aid in the development of a harnesses that can minimize discomfort for various activities, and increase the concentration on experiential activities. In addition, using the CLO 3D program, which is a 3D virtual wearing system, a harness was put on a virtual model, and the compression level was checked and compared with the actual pressure distribution. As a result of comparing the measured pressure values in the flying state with the clothing pressure wearing the harness in the CLO 3D program, the total pressure value was found to be about 68% of the actual measured value. This helps develop a harness that can minimize discomfort during activities by predicting the load and pressure on the body by first applying new designs to a virtual wearing system during development. These new harness patterns can solve the problems of conventional harnesses.

A Study on the Lubrication Flow Distribution in a Six-speed Automatic Transmission Valve Body (6속 자동변속기 밸브바디의 윤활오일유량 분배 특성 연구)

  • Kim, Jin-Yong;Na, Byung-Chul;Lee, Kye-Cheul
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.79-84
    • /
    • 2011
  • In general, a valve body of the automatic transmission(AT) is controlled by the clutch, the brake and lubricating oil flow in a hydraulic system and lubricant flow for each valve can be adjusted independently. To increase the lifetime of AT, the lubrication flow rate in a valve body for a 6 speed AT based parallel hybrid electric vehicle must be provided with proper oil distribution and control. In this study, we carried out several experiments without the inner parts of AT and with a AT assembly. The variation of the flow rate on oil temperature and pressure between an oil supply port and the outlets of the lubrication port was evaluated and analyzed. In the case of AT without the inner parts, it was evident that as the oil required for an operation of the clutch and brake was discharged from the outlet port, the flow rate from each lubrication port is decreased. However, the flow rate of the AT assembly was slightly increased. In addition, the lubrication flow rate was increased with increasing the oil temperature, and also it was reduced with increasing the oil pressure. Details of the resulting data are discussed.

The Effects of the Upright Body Type Exercise Program on Body Balance and Record of Archers

  • Kim, Dong-Kuk
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.1
    • /
    • pp.9-18
    • /
    • 2018
  • Objective: This study aimed to analyze how the upright body type exercise program affected body balance and record of archers. This study aimed to prove the effectiveness of upright body type exercise, on this basis, in enhancing the performance of archery players. Method: A total of 14 archers (7 men and 7 women) in B Metropolitan City who had ${\geq}4years$ of career in archery and were given explanation of its contents and purpose before giving spontaneous consent to the experiment were enrolled in the study. The upright body type exercise program was implemented thrice a week for 12 weeks, with higher exercise intensity with time. A resistive pressure sensor, Gaitview AFA-50, was used to measure the foot plantar pressure distribution and analyze quantitative information concerning variation in posture stability and weight shift in dynamic balance of foot plantar pressure in shooting and static balance of plantar pressure with the eyes open and closed and the change in archery record accompanying the change in body balance. Results: As for the differences in foot plantar pressure between before and after participation in the upright body type exercise program, there was no significant difference in static balance of foot plantar pressure with the eyes open, and there was statistically significant difference at the ${\alpha}=.05$ significance level in static balance of foot plantar pressure with the eyes closed or in dynamic balance of foot plantar pressure in shooting. There was statistically significant difference at the ${\alpha}=.05$ significance level in archery record. Conclusion: The upright body type exercise program had positive effects on static and dynamic balance of foot plantar pressure by allowing archers to experience less body sway and physical imbalance in shooting with closed eyes and positive effects on archery record. Thus, the program is expected to help archers correct their posture and perform better.

Development of The Physical Pressure Monitoring System to Prevent Pressure Ulcers (욕창 방지를 위한 체압 모니터링 시스템 개발)

  • Lee, Ah-Ra;Jang, Kyung-Bae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.4
    • /
    • pp.209-214
    • /
    • 2011
  • This study suggests a Healthcare System for elderly and disabled who have mobility impairment and use a wheelchair for long time. Seating long time in a wheelchair without reducing pressure causes high risk of developing pressure sores. Pressure sores come with great deal of pain and often lead to develop complication. Not only it takes time and effort to treat pressure sores but also increases medical expenses. Therefore, we will develop a device to help to prevent pressure sores by measuring pressure distribution while seating in a wheelchair and wirelessly send information to user device to check pressure distribution in real time. The equipment to measure body pressure is composed of FSR sitting mat which is a sensor measuring part and an user terminal which is a monitoring part. The designed mat is matrix formed FSR sensor to measure pressure. The sensor send measured data to the controller which is connected to the end of the mat, and then the collected data are sent to an user terminal through a bluetooth. Developing a pressure monitoring system will help to prevent those who have mobility impairment to manage pressure sores and furthermore relieve their burden of medical expenses.