• Title/Summary/Keyword: Body Pressure Sensor

Search Result 121, Processing Time 0.023 seconds

Multimodal Biological Signal Analysis System Based on USN Sensing System (USN 센싱 시스템에 기초한 다중 생체신호 분석 시스템)

  • Noh, Jin-Soo;Song, Byoung-Go;Bae, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.1008-1013
    • /
    • 2009
  • In this paper, we proposed the biological signal (body heat, pulse, breathe rate, and blood pressure) analysis system using wireless sensor. In order to analyze, we designed a back-propagation neural network system using expert group system. The proposed system is consist of hardware patt such as UStar-2400 ISP and Wireless sensor and software part such as Knowledge Base module, Inference Engine module and User Interface module which is inserted in Host PC. To improve the accuracy of the system, we implement a FEC (Forward Error Correction) block. For conducting simulation, we chose 100 data sets from Knowledge Base module to train the neural network. As a result, we obtained about 95% accuracy using 128 data sets from Knowledge Base module and acquired about 85% accuracy which experiments 13 students using wireless sensor.

Implementation of Human Positioning Monitoring Device for Underwater Safety (수중안전을 위한 인체 위치추적 모니터링 장치 구현)

  • Jong-Hwa Yoon;Dal-Hwan Yoon
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.225-233
    • /
    • 2023
  • This paper implements a system that monitors human body lifting information in the event of a marine accident. The monitoring system performs ultrasonic communication through a lifting device controller that transmits underwater environment information, and LoRa communication is performed on the water to provide GPS information within 10 km to the control center or mother ship. The underwater lifting controller transmits pneumatic sensor, gyro sensor, and temperature sensor information. In an environment where the underwater conditions increase by one atmosphere of water pressure every 10m in depth, and the amount of air in the instrument decreases by half compared to land, a model of a 60kg underwater mannequin is used. Using one 38g CO2 cartridge in the lifting appliance SMB(Surface Maker Buoy), carry out a lifting appliance discharge test based on the water level rise conditions within 10 sec. Underwater communication constitutes a data transmission environment using a 2,400-bps ultrasonic sensor from a depth of 40m to 100m. The monitoring signal aims to ensure the safety and safe human structure of the salvage worker by providing water depth, water temperature, and directional angle to rescue workers on the surface of the water.

Posture Correction Guidance System using Arduino (아두이노를 활용한 자세교정 유도 시스템)

  • Kim, Donghyun;Kim, Jeongmin;Bae, Woojin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.369-372
    • /
    • 2021
  • These days, people spend more time sitting at a desk for studies or work. Also, because people continue to use computers, smartphones, and tablet PCs often during break times, their posture is getting worse. Maintaining a position of bad posture for an extended period of time causes problems with the musculoskeletal system related to the neck, shoulders, and spine. Additionally, problems such as physical fatigue and posture deformation are predicted to expand to a wide range of age groups. Therefore, the core function of the system we are developing is to ensure correct sitting posture and to receive alert notifications via the created mobile application. To create the system, a flex sensor, pressure sensor, and tilt sensor are attached to a chair and utilized. The flex sensor detects and compares the amount of bending in the chair's posture and transmits this value to an Arduino Uno R3 board. Additionally, information such as body balance and incline angle are collected to determine whether or not the current sitting posture is correct. When the posture is incorrect, a notification is sent through the mobile application to indicate to the user and the monitoring app that their posture is not correct. The system proposed in this study is expected to be of great help in future posture-related research.

  • PDF

Design and Implementation of Mobile Continuous Blood Pressure Measurement System Based on 1-D Convolutional Neural Networks (1차원 합성곱 신경망에 기반한 모바일 연속 혈압 측정 시스템의 설계 및 구현)

  • Kim, Seong-Woo;Shin, Seung-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1469-1476
    • /
    • 2022
  • Recently, many researches have been conducted to estimate blood pressure using ECG(Electrocardiogram) and PPG(Photoplentysmography) signals. In this paper, we designed and implemented a mobile system to monitor blood pressure in real time by using 1-D convolutional neural networks. The proposed model consists of deep 11 layers which can learn to extract various features of ECG and PPG signals. The simulation results show that the more the number of convolutional kernels the learned neural network has, the more detailed characteristics of ECG and PPG signals resulted in better performance with reduced mean square error compared to linear regression model. With receiving measurement signals from wearable ECG and PPG sensor devices attached to the body, the developed system receives measurement data transmitted through Bluetooth communication from the devices, estimates systolic and diastolic blood pressure values using a learned model and displays its graph in real time.

Design Optimization of UMPC Keypad Using Human Finger (인체 손가락 해석을 통한 UMPC 키패드 설계 최적화)

  • Park, Soo-Hyun;Kim, Kwang-Il;Yang, Tae-Seung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.544-547
    • /
    • 2008
  • As the mobile electronic product is getting slimmer and smaller, the necessity of keypad is being increased. But the possibility of mis-typing keypad is increased rapidly due to the integrated keypad in the small mobile product. The business division has not considered the methodology of keypad design essentially. In this paper, analysis method and design evaluation standard to reduce the mis-typing of UMPC(Ultra Mobile Personal Computer) is suggested. First, the finite element analysis model and the biomechanical human body model are implemented in order to simulate the exact contact characteristic between finger and keypad. The reliability of analysis model is guaranteed by the comparison of the contact pressure between analysis result and experiment result of the pressure sensor. The design optimization of key shape and layout is derived through the response surface method. The prototype model is produced with the optimized design of keypad, and then it verified the advanced function with user mis-typing detection test. The optimized keypad design reduced the mis-typing ratio from 35% of existing model to 75 of proposed model. If this paper is widely applied to not only UMPC but also the other electronic products, the emotional quality of all products could be improved considerably.

  • PDF

Development of Self-Driven Pneumatic Robot for Boresonic Examination of Turbine Rotor (터빈로터 중심공 검사용 자기주행 공압형 로봇 개발)

  • Kang, Baejun;An, Myungjae;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.31-38
    • /
    • 2021
  • This study presents a new principle for driving the robot aimed at reducing the position error for the boresonic examination of turbine rotor. The conventional method of inspection is performed by installing manipulator onto the flange of the turbine rotor and connecting a pipe, which is then being pushed into the bore. The longer the pipe gets, the greater sagging and distortion appear, making it difficult for the ultrasonic sensor to contact with the internal surface of the bore. A pneumatic pressure will ensure the front or rear feet of the robot in close contact with the inner wall to prevent slipping, while the ball screw on the body of the robot will rotate to drive it in the axial direction. The compression force required for tight contact was calculated in the form of a three-point support, and a static structural simulation analysis was performed by designing and modeling the robot mechanism. The driving performance and ultrasonic detection ability have been tested by fabricating the robot, the test piece for ultrasonic calibration and the transparent mock-up for robot demonstration. The tests have confirmed that no slipping occurs at a certain pneumatic pressure or over.

Low Cost and High Sensitivity Flexible Pressure Sensor Based on Graphite Paste through Lamination after O2 Plasma Surface Treatment Process (O2 플라즈마 표면 처리 공정 후 라미네이션 공정으로 제작된 흑연 페이스트 기반의 저비용 및 고감도 유연 압력 센서)

  • Nam, Hyun Jin;Kang, Cheol;Lee, Seung-Woo;Kim, Sun Woo;Park, Se-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.21-27
    • /
    • 2022
  • Flexible pressure sensor was developed using low-cost conductive graphite as printed electronics. Flexible pressure sensors are attracting attention as materials to be used in future industries such as medical, games, and AI. As a result of evaluating various electromechanical properties of the printed electrode for flexible pressure sensors, it showed a constant resistance change rate in a maximum tensile rate of 20%, 30° tension/bending, and a simple pulse test. A more appropriate matrix pattern was designed by simulating the electrodes for which this verification was completed. Utilizing the Serpentine pattern, we utilized a process that allows simultaneous fabrication and encapsulation of the matrix pattern. One side of the printed graphite electrode was O2 plasma surface treated to increase adhesive strength, rotated 90 times, and two electrodes were made into one through a lamination process. As a result of pasting the matrix pattern prepared in this way to the wrist pulse position of the human body and proceeding with the actual measurement, a constant rate of resistance change was shown regardless of gender.

Implementation of Roll Control System for Passenger Car (승용차의 차량 롤 제어를 위한 시스템 구현)

  • 장주섭;이상호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.20-26
    • /
    • 1997
  • A System for reducing vehicle body roll by active control is developed. The stabilizer bar with hydraulic rotary actuator produces anti-roll moment which suppresses roll tendency. This reduction of roll improves the driving safety as well as the ride comfort. Vehicle test data shows considerable reduction of roll angle during steady-state turning. Also improvement of ride comfort is achieved by making the actuator freely rotatable, i.e. by connecting all chambers of actuator in normal driving conditions. A control algorithm using steering wheel angle and vehicle speed signal as input valve is applied. It is compared with signal of the G-sensor.

  • PDF

Design of A Downlink Power Control Scheme in Unequal Error Protection Multi-Code CDMA Mobile Medicine System

  • Lin, Chin-Feng;Lee, Hsin-Wang;Hung, Shih-Ii;Li, Ching-Yi
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.335-338
    • /
    • 2005
  • In this paper, we propose a downlink power control scheme to apply in the unequal error protection multi-code CDMA mobile medicine system. The mobile medicine system contains (i) blood pressure and body temperature measurement value, (ii) ECG medical signals measured by the electrocardiogram device, (iii) mobile patient's history, (iv) G.729 audio signal, MPEG-4 CCD sensor video signal, and JPEG2000 medical image. By the help of the multi-code CDMA spread spectrum communication system with downlink power control scheme and unequal error protection strategy, it is possible to transmit mobile medicine media and meet the quality of service. Numerical analysis and simulation results show that the system is a well transmission platform in mobile medicine.

  • PDF

Flow Analysis of Resin in an Extrusion Die for the Production of Medical Catheter Tubes (의료용 카테타 튜빙의 압출을 위한 다이내의 수지 흐름해석)

  • Lee, M.A.;Lyu, M.-Y.;Shin, D.J.;Kim, T.K.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.89-94
    • /
    • 2015
  • Medical catheter tubes are disposable devices that are inserted into the body cavities such as the pleura, trachea, esophagus, stomach, urinary bladder, ureter, or blood vessels for surgical procedures. Each hole of the inner tube is called a lumen, which is used as a passage for drug injections, waste discharge, polypus removal, blood transport, or injection of a camera or sensor. The catheter tube is manufactured by extrusion. The flow in the inner extrusion die affects the thickness and diameter of the tube. In the current study computer simulation of flow in an extrusion die for catheter tubing was performed. Velocity, pressure, shear rate, and shear stress were investigated and the die design was examined.