• Title/Summary/Keyword: Boar semen

Search Result 158, Processing Time 0.037 seconds

Effects of α-Linolenic Acid in Frozen-thawed Boar Spermatozoa (돼지 정자의 동결보존 시 α-Linolenic Acid의 효과)

  • Lee, Won-Hee;Hwangbo, Yong;Lee, Sang-Hee;Yang, Jin-Woo;Kim, Hwa-Young;Lee, Yu-Rim;Park, Ji-Eun;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.40 no.3
    • /
    • pp.27-31
    • /
    • 2016
  • The aim of this study was to evaluate effect of ${\alpha}$-linolenic acid (ALA) on viability, acrosome reaction and mitochondrial intact in frozen-thawed boar sperm. The boar semen was collected by gloved-hand method and cryopreserved in 20% egg yolk freezing extender containing ALA (0, 3, 5, and 10 ng/mL) with 0.05% ethanol. The frozen-boar spermatozoa were thawed at $37.5^{\circ}C$ for 45 sec in water-bath. The spermatozoa samples were evaluated the plasma membrane integrity, acrosome reaction, and mitochondrial integrity using flow cytometry. In results, population of live sperm with intact plasma membrane was significantly higher in control and 3 ng/mL ALA treatment group than ethanol group (p<0.05). In contract, dying sperms were higher in ethanol group than 3 ng/mL ALA treatment (p<0.05). Acrosomal membrane damage in all sperm population was reduced in 3 ng/mL ALA groups compared with ethanol treatment (p<0.05). However, acrosome damage in live sperm population was no significant difference among the all treatment groups. Mitochondrial integrity was not influenced by ALA treatments in both of live and all sperm population. In conclusion, this results show that supplement of ALA during the cryopreservation process could reduce the membrane damages including plasma and acrosomal membrane, whereas ALA did not influence to mitochondria in boar spermatozoa. Therefore, these results suggest that ALA can protect against the membrane damage derived cryo-stress, and cryopreservation efficiency of boar semen would be improved by use of ALA.

Effects of ice-binding protein from Leucosporidium on the cryopreservation of boar sperm

  • Park, Sang Hyoun;Oh, Keon Bong;Ock, Sun-A;Byun, Sung June;Lee, Hwi-Cheul;Kumar, Suresh;Lee, Sung Gu;Woo, Jae-Seok
    • Journal of Embryo Transfer
    • /
    • v.33 no.3
    • /
    • pp.185-194
    • /
    • 2018
  • The aim of this study was performed to evaluate the effects of ice-binding protein from the arctic yeast Leucosporidium (LeIBP) supplementation on cryopreservation of boar sperm. The collected semen was diluted ($1.5{\times}10^8/ml$) in lactose egg yolk (LEY) and cooled at $5^{\circ}C$ for 3 h. The cooled semen was then diluted ($1{\times}10^8/ml$) in LeIBP containing LEY with 9% glycerol and maintained at $5^{\circ}C$ for 30 min. The semen was divided into six experimental groups (control, 0.001, 0.005, 0.01, 0.05 and 0.1 mg/ml of LeIBP). The straws were kept on above the liquid nitrogen ($LN_2$) vapors for 20 minutes and then plunged into $LN_2$. After thawing, computer-assisted sperm analysis was used for sperm motility and flow cytometry was performed to assess the viability, acrosome integrity (FITC-PSA/PI), ROS (DCF/PI), lipid peroxidation (BODIPY C11/PI) and apoptosis (Annexin V/PI), respectively. No significant responses were observed for sperm motility. However, sperm viability was significantly increased on 0.05 and 0.1 mg/ml of LeIBP groups compared to control (P < 0.05). In addition, acrosome integrity was significantly increases LeIBP groups (P < 0.05) and both ROS and lipid peroxidation level were lower in all LeIBP groups than those of control (P < 0.05). On the other hand, a significant higher apoptosis rate was observed in 0.05 and 0.1 mg/ml of LeIBP groups compared to control (P < 0.05). It can be assumed that a supplementation of LeIBP in boar sperm freezing extender is an effective method to increase the sperm qualities after cryopreservation.

Antioxidant Supplementation Enhances the Porcine Semen Preservation Capacity

  • Chung, Ki-Hwa;Kim, In-Cheul;Son, Jung-Ho
    • Reproductive and Developmental Biology
    • /
    • v.39 no.1
    • /
    • pp.7-11
    • /
    • 2015
  • Preservation of liquid semen is an important factor for breeding management in swine industry. Oxidative stress of spermatozoa during liquid preservation has a detrimental effect on sperm quality and decreases fertility. Objective of this study was to determine the effect of antioxidant, Quercetin, on capability of porcine liquid semen preservation. Freshly collected porcine semen from boars (n=3), having proven fertility was counted, diluted to $3{\times}10^7/mL$ and divided into 5 different semen extenders. Aliquots of diluted semen with different extenders were subjected to measure the pH, motility, viability and sperm DNA structure status on elapse time after preservation for 10 days. For the first 3 days, semen preserved in all 5 different extenders maintained their initial pH and either gradually decreased or increased thereafter, indicating lipid peroxidation has started. Sperm motility (r=0.52, p=0.01) and viability (r=0.55, p=0.03) had positive correlation with semen pH. Sperm motility was maintained well (p<0.05) in especially 2 extenders containing Tris and antioxidant compared to other extenders, suggesting both Tris and antioxidant worked as pH regulator and had beneficial effects on sperm characteristic during preservation. Sperm DNA structure status accessed by sperm chromatin structure assay on elapsed time after preservation, tended to be higher in semen preserved without antioxidant. Taken together, addition of antioxidant to extender prevents the sperm from oxidative stress during storage in mechanism by which antioxidant slows the lipid peroxidation, and thus reduced the reactive oxygen species in preserved porcine semen resulted in maintaining semen pH, sperm motility and viability for 7~10 days.

Effects of Curcumin on Sperm Motility, Viability, Mitochondrial Activity and Plasma Membrane Integrity in Boar Semen

  • Lee, A-Sung;Lee, Sang-Hee;Lee, Seunghyung;Yang, Boo-Keun
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.406-410
    • /
    • 2017
  • Curcumin is known as a natural antioxidant, decreasing oxidative stress in animal cells. Generally, oxidative stress induces reactive oxygen species in sperm and leads to decreased sperm characteristics in pigs. Therefore, this study investigated the influence of curcumin on sperm motility, viability, mitochondrial activity and plasma membrane integrity in pigs. Curcumin (0, 5 and $10{\mu}M$) was treated in boar semen, which were incubated for 9 hours in $37^{\circ}C$. Then, motility, viability, mitochondrial activity, plasma membrane integrity of sperm was analyzed every 3 hours. In the results, sperm motility was significantly increased by $5{\mu}M$ curcumin after 3 and 9 hours after incubation, and viability was significantly higher in $5{\mu}M$ curcumin treatment at 3 hours (P<0.05). Similarly, sperm mitochondrial activity and plasma membrane integrity were significantly increased by $5{\mu}M$ curcumin at 3, 6 and 9 hours after incubation (P<0.05). There results suggest that curcumin improve sperm characteristics such as motility, viability, mitochondrial activity, and plasma membrane integrity, and may exert a positive effect on sperm fertility in pigs.

Study on the Preservation of Liquid Boar Semen with $\textrm{BF}_5$ and Butschwiler Diluents (희석액 $\textrm{BF}_5$ 엔오투와 Butschwiler를 이용한 돼지 액상정액 보존에 관한 연구)

  • 천용민;박창식;서길웅;이규승
    • Journal of Embryo Transfer
    • /
    • v.11 no.2
    • /
    • pp.159-166
    • /
    • 1996
  • 본 연구는 돼지 액상정액을 인공수정용 100ml 플라스틱 병에 보존하면서 BF5희석액과 Butschwiler 희석액 간에 보존 온도별 차이를 조사하고, BF5 희석액에서의 글리세롤 농도의 효과를 조사하여 돼지 액상정액을 좀더 장기간 사용할 수 있는 방법을 찾고자 실시하였다. 돼지 액상정액을 5$^{\circ}C$ 냉장고에 보존하면서 조사한 바에 의하면, 37$^{\circ}C$에서 0.5 및 2시간 배양후의 정자운동성은 전체 보존기간동안 BF5 희석액이 Butschwiler 희석액보다 유의하게 (P<0.05) 높게 나타났고, 정상첨체비율은 두 희석액간에 차이가 없었다. 돼지 액상정액을 15$^{\circ}C$에 보존하면서 조사한 바에 의하면, 3일부터 7일 보존시 까지 정자운동성과 정상첨체비율에 있어서 Butschwiler 희석액이 BF5 희석액보다 유의하데 높게 나타났다. BF5 희석액을 이용한 돼지 액상정액의 글리세롤 농도의 효과에 있어서는 최종 글리세롤 농도가 0, 2, 3, 및 5% 보다 1%일 때 가장 높은 정자운동성과 정상첨체비율을 나타내었다. 분만율, 복당 생존자돈수 그리고 출생시 평균 생시체중은 BF5 희석애과 Butschwiler 희석액간에 차이가 없었다. 이상의 연구 결과를 종합해 볼 때 BF5 희석액을 5$^{\circ}C$에서 Butschwiler 희석액은 15$^{\circ}C$에서 6-7일 동안 돼지 액상정액을 보존할 수 있었다.

  • PDF

Effects of Bacterial Contamination of Extended Boar Semen Preservation Periods on Embryo Production In Vitro (돼지 액상 정액의 보관일수에 따른 오염 정도가 체외 수정란 생산 효율에 미치는 영향)

  • Kim, Y.S.;Lee, H.T.;Kim, I.C.;Ryu, J.W.;Kim, C.W.;Chung, K.H.
    • Journal of Embryo Transfer
    • /
    • v.21 no.4
    • /
    • pp.345-351
    • /
    • 2006
  • The objective of this study was to investigate the effects of preservation period of porcine liquid semen on bacterial contamination and in vitro production of embryo. Extended liquid semen was prepared by three mixture of boar's ejaculates from each farm without antibiotics, and were kept in $17^{\circ}C$ semen preservation incubator until use. Sperm motility was significantly (p<0.05) decreased as semen preservation time goes by (78.7$\pm$2.4% for 1 day vs. 71.1$\pm$2.4 and 64.8$\pm$2.4% for 3 and 5 days of presentation, respectively). Quantitative of bacteria in semen was significantly (p<0.05) higher in 5 days ($57.8\pm105.2\times10^4$ Cfu) compared to 0 and 3 days ($32.1\pm76.8\times10^4$ and $26.9\pm46.6\times10^4$ Cfu, respectively) of preservation. In terms of development of in vitro fertilization of porcine embryos inseminated by preserved semen, the rate of normal fertilization (2PN) was significantly (p<0.05) decreased in 5 days (56.0$\pm$2.6%) compared to 1 and 3 days (66.0$\pm$2.7 and 64.0$\pm$2.7%, respectively) of preservation. Cleavage rate was also significantly (p<0.05) affected by preservation period (75.0$\pm$4% for 1 day, 70.0$\pm$0.3 and 71.0$\pm$0.3% for 3 and 5 days, respectively). The in vitro developmental rate of blastocyst stage embryo was significantly (p<0.05) affected by semen preservation period (15.0$\pm$1.0% for 1 day vs. 11.0$\pm$0.9 and 8.0$\pm$0.9% for 3 and 5 days, respectively). It is concluded that more than 3 days of liquid semen preservation without antibiotics increased the quantity of bacteria resulted in detrimental effect on sperm motility and decreased both normal insemination rate and the developmental rate of blastocyst stage embryo.

Effects of L-Carnitine and Nicotinic Acid on Sperm Characteristics in Miniature Pigs

  • Lee, Yeon-Ju;Lee, Sang-Hee;Kim, Yu-Jin;Hwangbo, Yong;Lee, Seunghyung;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.40 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • This study investigated the effects of L-carnitine (LC) and nicotinic acid (NA) on sperm viability during liquid storage at $18^{\circ}C$ in miniature pigs. $10{\mu}M$ LC and 30 mM NA, combined LC and NA (LN) were treated in fresh semen for 3, 7, and 10 days. In results, sperm survival increased in NA- and LN-treated semen on 7 and 10 days (p<0.05), mitochondrial integrity of live sperm increased in LN-treated semen on 7 days (p<0.05), but not NA-treated semen. In addition, we examined the acrosome reaction of sperm in miniature pigs. LC and NA did not influence on acrosome reaction of boar sperm. In conclusion, LC and NA effectively maintained the viability and quality of sperm during long-term storage in miniature pigs, suggesting that the combined LN may be useful for improving the semen extender for long-term liquid storage in pigs.

Protective Effects of Silymarin against the Toxicity of Bisphenol A (BPA) on Boar Sperm Quality

  • Jang, Hyun-Young;Kong, Hong-Sik;Choi, Byoung-Yang;Shin, Jong-Suh;Cheong, Hee-Tae;Kim, Jong-Tack;Park, In-Chul;Park, Choon-Keun;Yang, Boo-Keun
    • Journal of Embryo Transfer
    • /
    • v.26 no.4
    • /
    • pp.257-263
    • /
    • 2011
  • BPA, a diphenyl compound containing groups, that make it structurally similar to synthetic estrogen and is considered as one of the major endocrine disruptors. Silymarin has extensively been used to prevent and/or alleviate some human disease, especially for the treatment of adverse liver conditions. It has an antioxidative efficacy and cancer preventive efficacy. Therefore, we examined the hypothesis that silymarin can inhibit BPA-induced toxicity in boar sperm duing in vitro storage. Sperm characteristics (motility, viability, membrane integrity and mitochondrion activity) in semen exposed to BPA (10~200 uM) were sharply lowered, while it increase in a dose and time dependent manner due to silymarin addition (50~200 uM) into semen extender in the presence of BPA (100 uM). All of the evaluated characteristics were gradually improved in the groups that were treated with silymarin (50~200 uM) in the presence of BPA (100 uM) in comparison to BPA 100 uM alone group, irrespective of incubation periods (3 and 6 h). These results demonstrate that silymarin can ameliorate the toxicity of BPA on boar sperm characteristics during in vitro storage, suggesting that silymarin indirectly act as an antioxidant.

Effects of Diluent Component, Freezing Rate, Thawing Time and Thawing Temperature on Acrosome Morphology and Motility of Frozen-thawed Boar Sperm

  • Yi, Y.J.;Kwon, Y.A.;Ko, H.J.;Park, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.11
    • /
    • pp.1553-1558
    • /
    • 2002
  • This study was carried out to obtain informations regarding the effect of N-acetyl-D-glucosamine in the LEY (lactoseegg yolk) diluent according to incubation time in 5 ml maxi-straw and the effects of freezing rate, thawing temperature and thawing time in the LEN (lactose-egg yolk and N-acetyl-D-glucosamine) diluent on acrosome morphology and motility of frozen-thawed boar sperm. The study showed that the LEN diluent was higher post-thaw NAR (normal apical ridge) acrosome than the LEY diluent for 0.5 h incubation at 37$^{\circ}C$. However, there were no differences between the LEN and LEY diluents on post-thaw sperm motility according to incubation time. The straws frozen from 5.0 cm (20$^{\circ}C$/min) to 17.0 cm (1$^{\circ}C$/min) above the liquid nitrogen surface did not show any significant differences on post-thaw sperm motility. However, the straws frozen above 5.0 cm from the liquid nitrogen surface were higher NAR acrosome than those frozen above 17.0 cm. The post-thaw percentages of motile sperm and NAR acrosome were significantly higher (p<0.05) for the maxi-straws submerged for 40 or 45 sec in a 52$^{\circ}C$ water bath than for 30, 35, 50 or 55 sec. The mean sample temperatures of maxi-straws after 40 or 45 sec submersion were 20.7 or 26.4$^{\circ}C$. In conclusion, the sample temperature of the thawed semen was very important for post-thaw sperm survival in the LEN diluent of 5 ml maxi-straw. When the temperature of the thawed semen was 20.7$^{\circ}C$, the percentages of motile sperm and NAR acrosome were highest.

Effects of α-Linolenic Acid and Bovine Serum Albumin on Frozen-thawed Boar Sperm Quality during Cryopreservation

  • Lee, Won-Hee;Hwangbo, Yong;Lee, Sang-Hee;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.40 no.4
    • /
    • pp.33-37
    • /
    • 2016
  • This study was conducted to evaluate effect of ${\alpha}$-linolenic acid (ALA) and bovine serum albumin (BSA) on viability, acrosome reaction and mitochondrial intact in frozen-thawed boar sperm. The boar semen was collected by gloved-hand method and cryopreserved using freezing extender containing 3 ng/mL ALA and/or $20\;{\mu}g/mL$ BSA. Cryo-preserved boar sperms were thawed in $37^{\circ}C$ water-bath for 45 sec to analysis. Viability, acrosome reaction, and mitochondrial intact were analyzed using flow cytometry. In results, viability of frozen-thawed boar sperm was significantly higher in only ALA+BSA supplement group than control group (p<0.05), whereas there was no difference either in ALA or BSA supplement. However, acrosome reacted sperm in both of live and all sperm population were significantly decreased in all treatment groups than control (p<0.05). Interestingly, mitochondrial intact of boar sperm was enhanced in ALA and ALA+BSA groups compared with control (p<0.05). In this study, we showed that supplementation of ALA and BSA in freezing extender enhanced the sperm viability, mitochondrial intact and decrease acrosomal membrane damage. In conclusion, our findings suggest that quality of frozen-thawed sperm in mammalians could improve by using of ALA and BSA.