• Title/Summary/Keyword: Blur detection

Search Result 49, Processing Time 0.025 seconds

Cloudy Area Detection Algorithm By GHA and SOFM

  • Seo, Seok-Bae;Kim, Jong-Woo;Lee, Joo-Hee;Lim, Hyun-Su;Choi, Gi-Hyuk;Choi, Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.458-460
    • /
    • 2003
  • This paper proposes new algorithms for cloudy area detection by GHA (Generalized Hebbian Algorithm) and SOFM (Self-Organized Feature Map). SOFM and GHA are unsupervised neural networks and are used for pattern classification and shape detection of satellite image. Proposed algorithm is based on block based image processing that size is 16${\times}$16. Results of proposed algorithm shows good performance of cloudy area detection except blur cloudy area.

  • PDF

CNN Based Face Tracking and Re-identification for Privacy Protection in Video Contents (비디오 컨텐츠의 프라이버시 보호를 위한 CNN 기반 얼굴 추적 및 재식별 기술)

  • Park, TaeMi;Phu, Ninh Phung;Kim, HyungWon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.63-68
    • /
    • 2021
  • Recently there is sharply increasing interest in watching and creating video contents such as YouTube. However, creating such video contents without privacy protection technique can expose other people in the background in public, which is consequently violating their privacy rights. This paper seeks to remedy these problems and proposes a technique that identifies faces and protecting portrait rights by blurring the face. The key contribution of this paper lies on our deep-learning technique with low detection error and high computation that allow to protect portrait rights in real-time videos. To reduce errors, an efficient tracking algorithm was used in this system with face detection and face recognition algorithm. This paper compares the performance of the proposed system with and without the tracking algorithm. We believe this system can be used wherever the video is used.

Detection Copy-Move Forgery in Image Via Quaternion Polar Harmonic Transforms

  • Thajeel, Salam A.;Mahmood, Ali Shakir;Humood, Waleed Rasheed;Sulong, Ghazali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4005-4025
    • /
    • 2019
  • Copy-move forgery (CMF) in digital images is a detrimental tampering of artefacts that requires precise detection and analysis. CMF is performed by copying and pasting a part of an image into other portions of it. Despite several efforts to detect CMF, accurate identification of noise, blur and rotated region-mediated forged image areas is still difficult. A novel algorithm is developed on the basis of quaternion polar complex exponential transform (QPCET) to detect CMF and is conducted involving a few steps. Firstly, the suspicious image is divided into overlapping blocks. Secondly, invariant features for each block are extracted using QPCET. Thirdly, the duplicated image blocks are determined using k-dimensional tree (kd-tree) block matching. Lastly, a new technique is introduced to reduce the flat region-mediated false matches. Experiments are performed on numerous images selected from the CoMoFoD database. MATLAB 2017b is used to employ the proposed method. Metrics such as correct and false detection ratios are utilised to evaluate the performance of the proposed CMF detection method. Experimental results demonstrate the precise and efficient CMF detection capacity of the proposed approach even under image distortion including rotation, scaling, additive noise, blurring, brightness, colour reduction and JPEG compression. Furthermore, our method can solve the false match problem and outperform existing ones in terms of precision and false positive rate. The proposed approach may serve as a basis for accurate digital image forensic investigations.

Real-Time Two Hands Tracking System

  • Liu, Nianjun;Lovell, Brian C.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1491-1494
    • /
    • 2002
  • The paper introduces a novel system of two hands real-time tracking based on the unrestricted hand skin segmentation by multi color systems. After corer-based segmentation and pre-processing operation, a label set of regions is created to locate the two hands automatically. By the normalization, template matching is used to find out the left or right hand. An improved fast self-adaptive tracking algorithm is applied and Canny filter is used for hand detection.

  • PDF

Development of an Infrared Imaging-Based Illegal Camera Detection Sensor Module in Android Environments (안드로이드 환경에서의 적외선 영상 기반 불법 촬영 카메라 탐지 센서 모듈 개발)

  • Kim, Moonnyeon;Lee, Hyungman;Hong, Sungmin;Kim, Sungyoung
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.131-137
    • /
    • 2022
  • Crimes related to illegal cameras are steadily increasing and causing social problems. Owing to the development of camera technology, the miniaturization and high performance of illegal cameras have caused anxiety among many people. This study is for detecting hidden cameras effectively such that they could not be easily detected by human eyes. An image sensor-based module with 940 nm wavelength infrared detection technology was developed, and an image processing algorithm was developed to selectively detect illegal cameras. Based on the Android smartphone environment, image processing technology was applied to an image acquired from an infrared camera, and a detection sensor module that is less sensitive to ambient brightness noise was studied. Experiments and optimization studies were conducted according to the Gaussian blur size, adaptive threshold size, and detection distance. The performance of the infrared image-based illegal camera detection sensor module was excellent. This is expected to contribute to the prevention of crimes related to illegal cameras.

Deblurring of the Blurred Image Caused by the Vibration of the Interlaced Scan Type Digital Camera (인터레이스드 스캔방식 디지털 카메라의 떨림에 의한 영상블러 제거)

  • Chon Jcechoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.165-175
    • /
    • 2005
  • If the interlaced scan type camera moves while an image is filming from the camera, blur is often created from the misalignment of the two images of even and odd lines. This paper proposed an algorithm which removes the misalignment of the even and odd line images cased by the vibration of the interlaced scan type camera. The blurred original image is separated into the even and the odd line images as half size. Based on these two images, two full sized images are generated using interpolation technique. If a big difference between these two interpolated images is generated, the original image is taken while the camera is moving. In this case, a deblurred image is obtained with the alignment of these separated two images through feature point extraction, feature point matching, sub-pixel matching, outlier detection, and image mosaicking processes. This paper demonstrated that the proposed algorithm can create clear images from blurred images caused by various camera motions.

A study on Improving the Performance of Anti - Drone Systems using AI (인공지능(AI)을 활용한 드론방어체계 성능향상 방안에 관한 연구)

  • Hae Chul Ma;Jong Chan Moon;Jae Yong Park;Su Han Lee;Hyuk Jin Kwon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.126-134
    • /
    • 2023
  • Drones are emerging as a new security threat, and the world is working to reduce them. Detection and identification are the most difficult and important parts of the anti-drone systems. Existing detection and identification methods each have their strengths and weaknesses, so complementary operations are required. Detection and identification performance in anti-drone systems can be improved through the use of artificial intelligence. This is because artificial intelligence can quickly analyze differences smaller than humans. There are three ways to utilize artificial intelligence. Through reinforcement learning-based physical control, noise and blur generated when the optical camera tracks the drone may be reduced, and tracking stability may be improved. The latest NeRF algorithm can be used to solve the problem of lack of enemy drone data. It is necessary to build a data network to utilize artificial intelligence. Through this, data can be efficiently collected and managed. In addition, model performance can be improved by regularly generating artificial intelligence learning data.

Application of an Iterative 2D Equalizer to Holographic Data Storage Systems (반복 2차 등화기의 홀로그래픽 데이터 저장 장치 적용)

  • Kim, Sun-Ho;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.7
    • /
    • pp.1-5
    • /
    • 2012
  • At the present time when the limits of the magnetic storage systems appear, the holographic data storage (HDS) devices with high data transfer rate and high recording density are emerging as attractive candidates for next-generation optical storage devices. In this paper, to effectively improve the detection performance that is degraded by the two-dimensional inter-symbol interference under the HDS channel environment and the pixel misalignment, an iterative two-dimensional equalization scheme is proposed based on the contraction mapping theorem. In order to evaluate the performance of the proposed scheme, for various holographic channel environments we measure the BER performance using computer simulation and compare the proposed one with the conventional threshold detection scheme, which verifies the superiority of the proposed scheme.

A New CSR-DCF Tracking Algorithm based on Faster RCNN Detection Model and CSRT Tracker for Drone Data

  • Farhodov, Xurshid;Kwon, Oh-Heum;Moon, Kwang-Seok;Kwon, Oh-Jun;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1415-1429
    • /
    • 2019
  • Nowadays object tracking process becoming one of the most challenging task in Computer Vision filed. A CSR-DCF (channel spatial reliability-discriminative correlation filter) tracking algorithm have been proposed on recent tracking benchmark that could achieve stat-of-the-art performance where channel spatial reliability concepts to DCF tracking and provide a novel learning algorithm for its efficient and seamless integration in the filter update and the tracking process with only two simple standard features, HoGs and Color names. However, there are some cases where this method cannot track properly, like overlapping, occlusions, motion blur, changing appearance, environmental variations and so on. To overcome that kind of complications a new modified version of CSR-DCF algorithm has been proposed by integrating deep learning based object detection and CSRT tracker which implemented in OpenCV library. As an object detection model, according to the comparable result of object detection methods and by reason of high efficiency and celerity of Faster RCNN (Region-based Convolutional Neural Network) has been used, and combined with CSRT tracker, which demonstrated outstanding real-time detection and tracking performance. The results indicate that the trained object detection model integration with tracking algorithm gives better outcomes rather than using tracking algorithm or filter itself.

Reproducing Summarized Video Contents based on Camera Framing and Focus

  • Hyung Lee;E-Jung Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.85-92
    • /
    • 2023
  • In this paper, we propose a method for automatically generating story-based abbreviated summaries from long-form dramas and movies. From the shooting stage, the basic premise was to compose a frame with illusion of depth considering the golden division as well as focus on the object of interest to focus the viewer's attention in terms of content delivery. To consider how to extract the appropriate frames for this purpose, we utilized elemental techniques that have been utilized in previous work on scene and shot detection, as well as work on identifying focus-related blur. After converting the videos shared on YouTube to frame-by-frame, we divided them into a entire frame and three partial regions for feature extraction, and calculated the results of applying Laplacian operator and FFT to each region to choose the FFT with relative consistency and robustness. By comparing the calculated values for the entire frame with the calculated values for the three regions, the target frames were selected based on the condition that relatively sharp regions could be identified. Based on the selected results, the final frames were extracted by combining the results of an offline change point detection method to ensure the continuity of the frames within the shot, and an edit decision list was constructed to produce an abbreviated summary of 62.77% of the footage with F1-Score of 75.9%