• Title/Summary/Keyword: Blue-green algae

Search Result 173, Processing Time 0.024 seconds

Ecological Characteristics of Periphyton Community in a Small Mountain Stream (Buso) Inflowing Thermal Wastewater Effluent, Korea (온배수가 유입되는 계류 (부소천)에서 부착조류의 생태학적 특성)

  • Jeon, Gyeonghye;Kim, Nan-Young;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.2
    • /
    • pp.216-237
    • /
    • 2017
  • Thermal effluent of the hot spring has long been a field of interest in the relationship between temperature gradient and freshwater algae in geology, limnology and aquatic ecology throughout the world. On the other hand, many artificial hot springs have been developed in Korea, but the research on them has not been still active. This study was performed every month from December 2015 to September 2016, to elucidate the spatiotemporal effects of thermal wastewater effluent (TWE) on the ecosystem of benthic algal assemblage in four stations(BSU (upstream), HSW (hot spring wastewater outlet), BSD1~2 (downstream)) of the upstream reach of the Buso Stream, a tributary located in the Hantan River basin. During the survey, the influencing distance of temperature on TWE was <1.0 km, and it was the main source of N P nutrients at the same time. The effects of TWE were dominant at low temperature and dry season (December~March), but it was weak at high temperature and wet season (July~September), reflecting some seasonal characteristics. Under these circumstances, the attached algal communities were identified to 59 genera and 143 species. Of these, the major phylum included 21 genera 83 species of diatoms(58.0%), 9 genera 21 species of blue-green algae (14.7%) and 25 genera 32 species of green algae (22.4%), respectively. The spatiotemporal distribution of them was closely related to water temperature ($5^{\circ}C$ and $15^{\circ}C$) and current ($0.2m\;s^{-1}$ and $0.8m\;s^{-1}$). In the basic environment maintaining a high water temperature throughout the year round, the flora favoring high affinity to $PO_4$ in the water body or preferring stream habitat of abundant $NO_3-PO_4$ was dominant. As a result, when compared with the outcomes of previous algal ecology studies conducted in Korea, the Buso Stream was evaluated as a serious polluted state due to persistent excess nutrient supply and high thermal pollution throughout the year round by TWE. It can be regarded as a dynamic ecosystem in which homogeneity (Summer~Autumn) and heterogeneity (Winter~Spring) are repeated between upstream and downstream.

A Stduy on the Microflora of the Han River -Taxonomy of Phytoplankton for the South Han River and Estimation of Water Pollution Levels on the Central Area of the Han River- (한강의 Microflora에 관한 연구 (제6보) -남한강의 식물성플랑크톤에 대한 분류와 한강중심수역의 수질오탁판정-)

  • 정영호
    • Journal of Plant Biology
    • /
    • v.15 no.s
    • /
    • pp.1-32
    • /
    • 1972
  • In order to utilize for the prevention and preservation of the Han River from the environmental pollution the present studies were carried out to clarify the microflora and estimation of the water pollution levels of the Han River. In addition to the above regional and seasonal fluctuation of the phytoplankton was also examined. Samples of phytoplankton were collected from 6 stations in the South Han River during the period from December, 1971 to October, 1972. The results obtained during the present studies are as follows: 1. The phytoplankton samples collected from 6 stations, Yeoju, Hajapo-ri, Yangpyeong, Daruraegi, Giduwon and Paldang were identified and classified by Engler's classification system(1954). It resulted in 2 phylum, 2 classes, 7 orders, 10 families, 29 genera, 137 species, 1 sub-species, 49 varieties, 6 forma and 2 variety-forma. The total numbers of phytoplankton identified were 195 species, of which 7 families, 27 species, 26 varieties, 4 forma and 2 variety-forma are new to Korea, that of 54 species are first described in Korea. 2. In lower area of the Han River it is found 53 species from Paldang and in middle area it is found 114 species from Giduwon, 95 species from Daruraegi, 66 species from Yangpyeong, 71 species from Hajapori and 81 species from Yeoju. In standpoint of seasonal fluctuation of phytoplankton, the total numbers of the plankton is more abundant in summer than in winter season and it shows bimodal pattern. 3. As compared with previous data which obtained from 30 stations covering estuary to upper area, both South and North Han River, during the period from 1965-1972 it is shown that 10 species of the South Han River and 11 species of the North Han River are found throughout all seasons. Among the above species two are common in both area. In the other hand it is found that 9 species in spring season and 6 species in fall season in the South Han River and 10 species in spring, 23 species in summer, 4 species in fall and 15 species in winter season in the North Han River shows their seasonal fluctuation in this area. Among the seasonal occurrence of phytoplankton 10 species were consider to be indicator for the estimation of biological water pollution levels. 4. According to Fjerdingstad's water pollution level system (1963) the total numbers of 1, 230 species which have been collected from the Han River since 1965 includes 27 species of phytoplankton as indicator; 3 species of blue-green algae, 20 species of diatom, and 4 species of green-algae. 5. With 27 indicator species new estimation of water pollution level system was arranged for water pollution in the Han River. 6. The lower part of the central area of the Han River indicates mesosaprobic. In central area of the Han River shows mesosaprobic and oligosaprobic, but predominant in mesosaporobic. And it is indicated that mesosaprobic, oligosaprobic, and polysaprobic factors mixed up in the North Han River. Compare with their water pollution level in the South and North Han River, with author's new system, it is estimated that North Han River is more polluted than South Han River. 7. The reason why North Han River is more polluted suggested that the selfpurification action was limited by their circulation speed. The rapid speed of water in the North Han River is mainly caused by their topography and water-drainage from waterpower plant. In conclusion the central area of the Han River consist of mesosaprobe zone, as a part with oligosaprobe zone. But the presence of polysaprobe zone in the North Han River gives us many problems in future for the nationa development programme and natural conservation in this area.

  • PDF

Overview of UV-B Effects on Marine Algae (자외선이 해조류에 미치는 영향에 관한 고찰)

  • 한태준
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • Numerous observations revealed strong evidence of increased middle ultraviolet radiation or UV-B (280 ~ 320 nm) at the earth's surface resulting from stratospheric ozone depletion. UV is the waveband of electromagnetic radiation which is strongly absorbed by nucleic acids and proteins, thus causing damage to living systems. It has been recorded in the East Sea, Korea that solar UV-B impinging on the ocean surface penetrates seawater to significant depths. Recent researches showed that exposure to UV-B for as short as 2h at the ambient level (2.0 Wm$^{-2}$) decreased macroalgal growth and photosynthesis and destroyed photosynthetic pigments. These may suggest that UV-B could be an important environmental factor to determine algal survival and distribution. Some adaptive mechanisms to protect macroalgae from UV-damage have been found, which include photoreactivation and formation of UV-absorbing pigments. Post-illumination of visible light mitigated UV-induced damage in laminarian young sporophytes with blue the most effective waveband. The existence of UV-B absorbing pigments has been recognized in the green alga, Ulva pertusa and the red alga, Pachymeniopsis sp., which is likely to exert protective function for photosynthetic pigments inside the thalli from UV-damage. Further studies are however needed to confirm that these mechanisms are of general occurrence in seaweeds. Macroalgae together with phytoplankton are the primary producers to incorporate about 100 Gt of carbons per year, and provide half of the total biomass on the earth. UV-driven reduction in macroalgal biomass, if any, would therefore cause deleterious effects on marine ecosystem. The ultimate impacts of increasing UV-B flux due to ozone destruction are still unknown, but the impression from UV studies made so far seems to highlight the importance of setting up long-term monitoring system for us to be able to predict and detect the onset of large -scale deterioration in aquatic ecosystem.

  • PDF

Seasonal Dynamis and Pollution Status of the Water Quality in the Kum River Reservoir (금강 하구호에서 수질의 계절변동과 오염도)

  • Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.251-259
    • /
    • 2000
  • Monthly variations of physico-chemical and biological parameter were determined in near the Kum River mouth at lower discharge period from January 1998 to September 1999. The characteristics of water quality was showed hypertrophic with average values of total nitrogen (TN), total phosphorus (TP), chlorophyll-a and transparency are 3.9 mg N/l, $160\;{\mu}g/l$, $73\;{\mu}g/l$ and 0.8 m, respectively. Among a nitrogen component, inorganic and organic nitrogen comprised 34% and 66% of TN, $NH_4$ and $NO_3$ comprised 30% and 70% of inorganic nitrogen respectively. SRP concentration comprised below 9% of TP. TN/TP and DIN/SRP ratio in winter were higher than in summer. SRSi fluctuation was very wide as ranged from 0 to 3.0 mg Si/l and the highest after flood event in summer. Long-term depleted pattern of Si was observed, that is considered to be important nutrient for algal growth. Chlorophyll-a concentration was very high as $113\;{\mu}g/l$, $162\;{\mu}g/l$ in winter and summer respectively, which persisent bloomed diatom Stephanodiscus and blue-green algae Microcystis. In consequence, water quality management of these periods are considered very important.

  • PDF

Effect of Selected Environmental Factors on the Production of Geosmin in Phormidium Sp. (Phormidium sp.의 Geosmin 생산에 미치는 환경요인의 영향)

  • 박대균;오희목;안치용;맹주선
    • Korean Journal of Microbiology
    • /
    • v.36 no.1
    • /
    • pp.52-57
    • /
    • 2000
  • A method for quantitative and qualitative analysis of geosmin, odorant produced by several actinomycetes and cyanobacteria, was established and optimized. The effects of environmental conditions on the growth of Phormidium sp. NIVA-CYA7 were examined and the production and release of geosmin by the species was analyzed by using the purge and trap-gas chromatographic technique. One of the major advantages of the technique established in the present study is that the preparation of sample is simpler and purge time is shorter. Under the culture conditions (pH 7.9, $20^{\circ}C$, 120-140 $\mu$E/$m^2$/s and Z8 medium), Phormidium showed growth characteristics with a lag phase for 8 days and an exponential phase for 14 days followed by a stationary phase. Reduction of inorganic nitrogen concentrations in the culture medium from 250 to 100 or 25 $\mu$M brought no significant effect on the cell growth. However, the cell growth was significantly inhibited with decreasing concentrations of inorganic phosphorus from 25 to 10 or 2.5 $\mu$M. When the inorganic phosphorus concentration in the medium was lowered from 25 to 10 $\mu$M, the levels of geosmin in the organism expressed as percentages per unit TOC and chlorophyII-$\alpha$ increased by 35% and 68%, respectively. When the initial pH of the medium was 9.4, geosmin content was 0.0824 $\mu$g/mg C, which was 2-fold higher than that at pH 7.9 Consequently, the level of geosmin in Phormidium was found to vary with growth phases of the culture, external inorganic phosphorus concentration and external pH, while the release of geosmin was not significantly affected by the factors.

  • PDF

Petrological and Geological Safety Diagnosis of Multi-storied Stone Pagoda in the Daewonsa Temple, Sancheong, Korea (대원사 다층석탑의 지질학적 및 암석학적 안전진단)

  • 이찬희;서만철
    • Economic and Environmental Geology
    • /
    • v.35 no.4
    • /
    • pp.355-368
    • /
    • 2002
  • The multi-storied Daewonsa stone pagoda (Treasure No. 1112) in the Sancheong, Korea was studied on the basis of deterioration and geological safety diagnosis. The stone pagoda is composed mainly of granitic gneiss, partly fine-grained granitic gneiss, leucocratic gneiss, biotite granite and ceramics. Each rock of the pagoda is highly exfoliated and fractured along the edges. Some fractures in the main body and roof stones are treated by cement mortar. This pagoda is strongly covered with yellowish to reddish brown tarnish due to the amorphous precipitates of iron hydroxides. Dark grey crust by manganese hydroxides occur Partly, and some Part coated with white grey gypsum and calcite aggregates from the reaction of cement mortar and rain. As the main body, roof and upper part of the pagoda, the rocks are developed into the radial and linear cracks. Surface of this pagoda shows partly yellowish brown, blue and green patchs because of contamination by algae, lichen, moss and bracken. Besides, wall-rocks of the Daewonsa temple and rock aggregates in the Daewonsa valley are changed reddish brown color with the same as those of the pagoda color. It suggests that the rocks around the Daewonsa temple are highly in iron and manganese concentrations compared with the normal granitic gneiss which color change is natural phenomena owing to the oxidation reaction by rain or surface water with rocks. Therefore, for the attenuation of secondary contamination, whitening and reddishness, the possible conservation treatments are needed. Consisting rocks of the pagoda would be epoxy to reinforce the fracture systems for the structural stability on the basements.

Determination of geosmin and 2-MIB in Nakdong River using headspace solid phase microextraction and GC-MS (HS-SPME-GC/MS를 이용한 낙동강 수계 하천수 중 조류기원성 냄새물질 분석)

  • Lee, Injung;Lee, Kyoung-Lak;Lim, Tae-Hyo;Park, Jeong-Ja;Cheon, Seuk
    • Analytical Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.326-332
    • /
    • 2013
  • Geosmin and 2-methylisoborneol (2-MIB) are volatile organic compounds responsible for the majority of unpleasant taste and odor events in drinking water. Geosmin and 2-MIB are byproducts of blue-green algae (cyanobacteria) with musty and earthy odors. These compounds have odor threshold concentration at ng/L levels. It is needed to develop a sensitive method for determination of geosmin and 2-MIB to control the quality of drinking water. In this study, geosmin and 2-MIB in water samples were determined by gas chromatography-mass spectrometry (GC-MS) with headspace-solid phase microextraction (HS-SMPE). The detection limits of this method were 1.072 ng/L and 1.021 ng/L for geosmin and 2-MIB, respectively. Good accuracy and precision was also obtained by this method. Concentrations of the two compounds were measured in raw waters from Nakdong River in the cyanobacterial blooming season. Water bloom formed by cyanobacteria has been occurred currently in Nakdong River. It is needed to investigate the concentrations of geosmin and 2-MIB to control the quality of drinking water from Nakdong River. Both geosmin and 2-MIB were detected in raw waters from Nakdong River at concentrations ranging from 4 to 24 ng/L and 6 to 16 ng/L, respectively.

Anti-inflammatory effect of soil blue-green algae Nostoc commune isolated from Daejeon National Cemetery (국립대전현충원에서 분리한 남조류 구슬말(Nostoc commune)의 항염증 효과)

  • Hong, Hyehyun;Bae, Eun Hee;Park, Tae-Jin;Kang, Min-Sung;Kang, Jae Shin;Chi, Won-Jae;Kim, Seung-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.2
    • /
    • pp.113-120
    • /
    • 2022
  • We examined the anti-inflammatory properties of Nostoc commune HCW0811 in lipopolysaccharide-stimulated RAW264.7 macrophage cells. The anti-inflammatory activity of HCW0811 on viability of treated cells was assessed by measuring the level of expression of NO, prostaglandin E2 and pro-inflammatory cytokines, namely interleukin-1β, interleukin-6, and tumor necrosis factor-α in HCW0811 treated RAW 264.7 macrophages. HCW0811 was non-toxic to cells and inhibited the production of cytokines in a concentration-dependent manner. In addition its treatment suppressed the production of pro-inflammatory cytokines in a dose-dependent manner, and concomitantly decreased the protein expressions of inducible NO synthase and cyclooxygenase-2. Moreover, the levels of the phosphorylation of mitogen-activated protein kinase family proteins such as extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, and nuclear factor kappa B were reduced by HCW0811. These findings suggest that the HCW0811 collected from Daejeon National Cemetery have anti-inflammatory effects, and demonstrated its efficacy in cell-based in vitro assays.

Evaluation of the Water Quality Changes in Agricultural Reservoir Covered with Floating Photovoltaic Solar-Tracking Systems (수상 회전식 태양광 발전시설 설치에 따른 농업용 저수지의 수질변화 평가)

  • Lee, Inju;Joo, Jin Chul;Lee, Chang Sin;Kim, Ga Yeong;Woo, Do Young;Kim, Jae Hak
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.255-264
    • /
    • 2017
  • To evaluate the water quality changes in agricultural reservoir covered with floating photovoltaic solar-tracking systems, the water quality variations with time and depth were monitored on both six sites for light blocking zones and four sites for light penetration zones after the installation of floating photovoltaic solar-tracking systems in Geumgwang reservoir at Anseong-si, Kyeonggi province. For one year with 16 monitoring events, water quality parameters [i.e., water temperature, pH, dissolved oxygen (DO), chlorophyll-a (Chl-a), and blue-green algae (BGA)] were monitored at depths of 0.3 m, 1 m, 3 m, and 5 m, while chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were monitored at depths of 0.3 m. Statistically, the difference in all water quality parameters was not significantly different (p > 0.05) at the level of significance of 0.05. Based on these results, the water quality data from light blocking zones (site 1~6) and light penetration zones (site 7~10) were clustered, and were compared with time and depth. As a result, the difference in water temperature, pH, DO, COD, TN, TP, Chl-a, and BGA between light blocking zones and light penetration zones was not significant (p > 0.05) with different time and depth. For Chl-a and BGA, some data from light blocking zones greater than light penetration zones were temporary observed due to the severe drought, low water storage rate, and over growth of periphyton. However, this temporal phenomenon did not impact the water quality. Considering the small water surface area (${\leq}0.5%$) covered by floating photovoltaic solar-tracking systems, the mixing effect of whole Geumgwang reservoir caused by Ekman current and continuous discharge were more dominant than the effect of reduced solar irradiance. Further study is warranted to monitor the changes in water quality and aquatic ecosystems with greater water surface area covered by floating photovoltaic solar-tracking systems for a long time.

Assessment of Water Quality in Pyeongtaek Reservoir and Its Main Tributaries (평택호와 유역 주요 하천의 수환경 및 오염도 평가)

  • Hwang, Soon-Jin;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.1 s.102
    • /
    • pp.38-47
    • /
    • 2003
  • The water quality of the Pyeongtaek Reservoir and its main streams has been eval uated far water pollution state in March, June, September and December,2000. The following are the findings: $NH_4$ accounts for the majority of TN in the inflow streams. In the reservoir, TN and $NH_4$ are the more present in the winter season and less in the summer season, with $1.6{\sim}2.4$ times of $NO_3$ and $5.3{\sim}11.4$ times of $NO_2$ found in December and June compared with other seasons. The concentration of each component is different between streams: $NH_4$ among inorganic nitrogen has the highest concentration in the upstream, and $NO_3$ is more prevalent in the downstream. SRP accounts for $25{\sim}69%$ of TP in the stream. Unlike N component, P component in the reservoir rapidly decreases from upstream toward downstream, except in the summer. Average SRSi slightly increases in the fall, i.e., immediately after rainfall. In the streams, the average concentration of chlorophyll-a ranges from 9 to $33{\mu}g/l$, and is relatively high in the downstream. In contrast, in the reservoir, it is the highest in the upstream where $NH_4$ and SRP are frequently found. In particular, diatom and cryptomonad algae are bloomed in March, and blue-green algae in September; their maximum values are $108{\mu}g/l$ and $130{\mu}g/l$, respectively. Considering the concentration of N and P nutrients, pollution loads can affect the Pyeongtaek Reservoir in the downstream in this order: Ansong Stream