• 제목/요약/키워드: Blue laser imaging

검색결과 10건 처리시간 0.024초

청록색 레이저를 이용한 수중영상 연구 (Underwater Imaging with a blue-green laser)

  • 이상훈;김근배;이광식;김달우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.2180-2182
    • /
    • 2000
  • Laser emission, a part of electromagnetic wave, has short propagation length in water, and the underwater applications of laser are limited. The acquisition of underwater imaging is possible only by using a blue-green laser since the blue-green range has relatively small absorption coefficient in water. We introduce the conditions of the laser required for underwater imaging and the attenuation characteristics of a blue-green laser used in water.

  • PDF

Laser Illuminated Multi-viewer 3D Displays

  • Sexton, Ian;Bates, Richard;Lee, Wing;Surman, Phil;Hopf, Klaus;Neumann, Frank;Corbett, Alex;Buckley, Edward
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1423-1426
    • /
    • 2008
  • This paper describes current work regarding two EC funded projects, MUTED and HELIUM3D whose objective is to produce an autostereoscopic display system which is well suited to domestic television applications. Both of these projects have common roots in a previous EC funded project (ATTEST) and both employ laser illumination and viewer head tracking.

  • PDF

Linked Color Imaging and Blue Laser Imaging for Upper Gastrointestinal Screening

  • Osawa, Hiroyuki;Miura, Yoshimasa;Takezawa, Takahito;Ino, Yuji;Khurelbaatar, Tsevelnorov;Sagara, Yuichi;Lefor, Alan Kawarai;Yamamoto, Hironori
    • Clinical Endoscopy
    • /
    • 제51권6호
    • /
    • pp.513-526
    • /
    • 2018
  • White light imaging (WLI) may not reveal early upper gastrointestinal cancers. Linked color imaging (LCI) produces bright images in the distant view and is performed for the same screening indications as WLI. LCI and blue laser imaging (BLI) provide excellent visibility of gastric cancers in high color contrast with respect to the surrounding tissue. The characteristic purple and green color of metaplasias on LCI and BLI, respectively, serve to increase the contrast while visualizing gastric cancers regardless of a history of Helicobacter pylori eradication. LCI facilitates color-based recognition of early gastric cancers of all morphological types, including flat lesions or those in an H. pylori-negative normal background mucosa as well as the diagnosis of inflamed mucosae including erosions. LCI reveals changes in mucosal color before the appearance of morphological changes in various gastric lesions. BLI is superior to LCI in the detection of early esophageal cancers and abnormal findings of microstructure and microvasculature in close-up views of upper gastrointestinal cancers. Excellent images can also be obtained with transnasal endoscopy. Using a combination of these modalities allows one to obtain images useful for establishing a diagnosis. It is important to observe esophageal cancers (brown) using BLI and gastric cancers (orange) surrounded by intestinal metaplasia (purple) and duodenal cancers (orange) by LCI.

광영상정보 응용을 위한 compact blue laser (Compact Blue Laser for Optical Imaging Information Application)

  • 황대석;김규식;이영우;류광렬;김정태
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 추계종합학술대회
    • /
    • pp.938-940
    • /
    • 2003
  • 고출력 반도체 레이저(500mW)의 출력광 파장 809nm과 반도체 레이저로 여기되는 Nd:YVO4레이저의 출력광 파장 1064nm를 공진기 내부에서 비선형 광학 소자인 KTP(Potassium titanyl posphate : KTPiOPO$_4$)를 사용하여 합주파 발생 실험을 행하여 459nm의 청색레이저를 얻었다. 제2의 위상 정합 정합조건($\psi$=90$^{\circ}$, $\theta$=90$^{\circ}$)에서 반도체 레이저의 입력광 세기가 400mW일 때 청색레이저의 최대 출력 0.95mW를 얻었으며, 청색레이저의 발진문턱입력 세기는 120mW이었다.

  • PDF

Detecting colorectal lesions with image-enhanced endoscopy: an updated review from clinical trials

  • Mizuki Nagai;Sho Suzuki;Yohei Minato;Fumiaki Ishibashi;Kentaro Mochida;Ken Ohata;Tetsuo Morishita
    • Clinical Endoscopy
    • /
    • 제56권5호
    • /
    • pp.553-562
    • /
    • 2023
  • Colonoscopy plays an important role in reducing the incidence and mortality of colorectal cancer by detecting adenomas and other precancerous lesions. Image-enhanced endoscopy (IEE) increases lesion visibility by enhancing the microstructure, blood vessels, and mucosal surface color, resulting in the detection of colorectal lesions. In recent years, various IEE techniques have been used in clinical practice, each with its unique characteristics. Numerous studies have reported the effectiveness of IEE in the detection of colorectal lesions. IEEs can be divided into two broad categories according to the nature of the image: images constructed using narrow-band wavelength light, such as narrow-band imaging and blue laser imaging/blue light imaging, or color images based on white light, such as linked color imaging, texture and color enhancement imaging, and i-scan. Conversely, artificial intelligence (AI) systems, such as computer-aided diagnosis systems, have recently been developed to assist endoscopists in detecting colorectal lesions during colonoscopy. To gain a better understanding of the features of each IEE, this review presents the effectiveness of each type of IEE and their combination with AI for colorectal lesion detection by referencing the latest research data.

Role of endoscopy in gastroesophageal reflux disease

  • Daniel Martin Simadibrata;Elvira Lesmana;Ronnie Fass
    • Clinical Endoscopy
    • /
    • 제56권6호
    • /
    • pp.681-692
    • /
    • 2023
  • In general, gastroesophageal reflux disease (GERD) is diagnosed clinically based on typical symptoms and/or response to proton pump inhibitor treatment. Upper gastrointestinal endoscopy is reserved for patients presenting with alarm symptoms, such as dysphagia, odynophagia, significant weight loss, gastrointestinal bleeding, or anorexia; those who meet the criteria for Barrett's esophagus screening; those who report a lack or partial response to proton pump inhibitor treatment; and those with prior endoscopic or surgical anti-reflux interventions. Newer endoscopic techniques are primarily used to increase diagnostic yield and provide an alternative to medical or surgical treatment for GERD. The available endoscopic modalities for the diagnosis of GERD include conventional endoscopy with white-light imaging, high-resolution and high-magnification endoscopy, chromoendoscopy, image-enhanced endoscopy (narrow-band imaging, I- SCAN, flexible spectral imaging color enhancement, blue laser imaging, and linked color imaging), and confocal laser endomicroscopy. Endoscopic techniques for treating GERD include esophageal radiofrequency energy delivery/Stretta procedure, transoral incisionless fundoplication, and endoscopic full-thickness plication. Other novel techniques include anti-reflux mucosectomy, peroral endoscopic cardiac constriction, endoscopic submucosal dissection, and endoscopic band ligation. Currently, many of the new endoscopic techniques are not widely available, and their use is limited to centers of excellence.

Appropriate Color Enhancement Settings for Blue Laser Imaging Facilitates the Diagnosis of Early Gastric Cancer with High Color Contrast

  • Hiraoka, Yuji;Miura, Yoshimasa;Osawa, Hiroyuki;Nomoto, Yoshie;Takahashi, Haruo;Tsunoda, Masato;Nagayama, Manabu;Ueno, Takashi;Lefor, Alan Kawarai;Yamamoto, Hironori
    • Journal of Gastric Cancer
    • /
    • 제21권2호
    • /
    • pp.142-154
    • /
    • 2021
  • Purpose: Screening image-enhanced endoscopy for gastrointestinal malignant lesions has progressed. However, the influence of the color enhancement settings for the laser endoscopic system on the visibility of lesions with higher color contrast than their surrounding mucosa has not been established. Materials and Methods: Forty early gastric cancers were retrospectively evaluated using color enhancement settings C1 and C2 for laser endoscopic systems with blue laser imaging (BLI), BLI-bright, and linked color imaging (LCI). The visibilities of the malignant lesions in the stomach with the C1 and C2 color enhancements were scored by expert and non-expert endoscopists and compared, and the color differences between the malignant lesions and the surrounding mucosa were assessed. Results: Early gastric cancers mainly appeared orange-red on LCI and brown on BLI-bright or BLI. The surrounding mucosae were purple on LCI regardless of the color enhancement but brown or pale green with C1 enhancement and dark green with C2 enhancement on BLI-bright or BLI. The mean visibility scores for BLI-bright, BLI, and LCI with C2 enhancement were significantly higher than those with C1 enhancement. The superiority of the C2 enhancement was not demonstrated in the assessments by non-experts, but it was significant for experts using all modes. The C2 color enhancement produced a significantly greater color difference between the malignant lesions and the surrounding mucosa, especially with the use of BLI-bright (P=0.033) and BLI (P<0.001). C2 enhancement tended to be superior regardless of the morphological type, Helicobacter pylori status, or the extension of intestinal metaplasia around the cancer. Conclusions: Appropriate color enhancement settings improve the visibility of malignant lesions in the stomach and color contrast between the malignant lesions and the surrounding mucosa.

Effects of hydration structure on the femtosecond white light-induced phase transition to crystalline silicon nanocrystal having ultrabright narrowed luminescence

  • Choi, Kyong-Hoon;Wang, Kang-Kyun;Ha, Jeong-Hyon;Kim, Yong-Rok
    • Rapid Communication in Photoscience
    • /
    • 제4권3호
    • /
    • pp.54-58
    • /
    • 2015
  • Under the condition of femtosecond impulsive nonlinear optical irradiation, the bright and narrowed blue emission of silicon nanocrystal was observed. This synthetic method produced very small (~ 4 nm) oxide-capped silicon nanocrystal having probably ultra small emitting core (~ 1 nm) inferred from luminescence. By controlling the stirring condition, very high efficiencies of luminescence ( 4 fold higher) were obtained compared with the other conventional femtosecond laser fragmentation methods, which was attributed to the differences in hydration shell structure during the femtosecond laser induced irreversible phase transition reaction. When we properly adjusted the irradiation times of the white light continuum and stirring condition, very homogeneous luminescent silicon nanocrystal bands having relatively sharp lineshape were obtained, which can be attributable to the luminescent core site isolated and free from the surface defects.

고속 3차원 측정 및 칼라 이미징을 위한 다중 광탐침 공초점 주사 현미경 (Confocal Scanning Microscopy with Multiple Optical Probes for High Speed 3D Measurements and Color Imaging)

  • 천완희;이승우;안진우;권대갑
    • 반도체디스플레이기술학회지
    • /
    • 제7권1호
    • /
    • pp.11-16
    • /
    • 2008
  • Confocal scanning microscopy is a widely used technique for three dimensional measurements because it is characterized by high resolution, high SNR and depth discrimination. Generally an image is generated by moving one optical probe that satisfies the confocal condition on the specimen. Measurement speed is limited by movement speed of the optical probe; scanning speed. To improve measurement speed we increase the number of optical probes. Specimen region to scan is divided by optical probes. Multi-point information each optical probe points to can be obtained simultaneously. Therefore image acquisition speed is increased in proportion to the number of optical probes. And multiple optical probes from red, green and blue laser sources can be used for color imaging and image quality, i.e., contrast, is improved by adding color information by this way. To conclude, this technique contributes to the improvement of measurement speed and image quality.

  • PDF

자외선B 조사에 의한 모발 외부와 내부의 광산화에 관한 분광학적 비교 (Spectroscopic Comparison of Photo-oxidation of Outside and Inside of Hair by UVB Irradiation)

  • 하병조
    • 공업화학
    • /
    • 제31권2호
    • /
    • pp.220-225
    • /
    • 2020
  • 모발은 여러 가지 아미노산들을 포함하는 단백질로 이루어져 있다. 자외선(UV)은 태양광선중에서 모발손상에 가장 큰 영향을 미치며 모발 노화에 주된 역할을 한다. 본 연구의 목적은 전자현미경(SEM), 공초점현미경(CLSM) 및 적외선 현미경분광법(IR micro spectroscopy)을 이용하여 정상모발에 UVB를 조사한 후 특징적인 형태학적 및 화학적 구조변화를 알아보는 것이다. 에너지 분산형 X선 분광기가 부착된 전자현미경은 자외선 조사모발의 표면이 정상모발과 비교했을 때 거칠고 높은 산소원소의 함량을 보였다. 형광 및 3차원 위상 이미지를 CLSM으로 분석한 결과 정상모발의 초록색 형광방출이 UVB 조사모발에 비해 매우 높았다. 또한 fluorescamine 형광 염색법을 통해 UVB 조사모발은 정상모발에 비해 펩타이드 결합의 파괴로 생성된 자유 아미노기가 많음을 확인할 수 있었다. UVB 조사모발의 강한 푸른색 형광은 아미노기의 함량이 높다는 것을 의미하며, 이는 CLSM에서도 관찰되었다. 따라서 fluorescamine은 UVB 조사모발에서 펩타이드 결합의 파괴를 관찰하는데 유용한 도구가 될 수 있다. 정상모발과 UVB 조사모발의 단면을 IR micro-spectroscopy를 통해 이미지 맵핑(mapping)한 결과, UVB 조사모발은 정상 모발에 비해 모발의 표면은 물론 내부에 걸쳐 디설파이드 결합(disulfide bond)의 산화가 일어나고 있음을 확인할 수 있었다. 이러한 분광학적 방법은 단독 또는 다른 분석법과 함께 모발화장품의 개발에 응용될 수 있을 것이다.