• Title/Summary/Keyword: Blue LEDs

Search Result 249, Processing Time 0.028 seconds

Optical Design of Light Guide Plate Material for Slim Liquid Crystal Display (박형 디스플레이를 위한 도광판의 광학설계)

  • Gong, Taewon;Choi, Gyu Jin;Kwon, Jin Hyuk;Park, In Shik;Lee, Sunmook;Woo, DongJin;Gwag, Jin Seog
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.233-238
    • /
    • 2014
  • In this paper, in order to achieve slim and light liquid crystal display, we examine the optical conditions that can obtain uniform light with higher optical efficiency over whole light guide plate (LGP) through simulation. Furthermore, to overcome the issues of hot spot in front of red, green, and blue light emitting diodes (RGB LEDs) source and non-uniform color mixing, we propose four shaped color mixing bars tied up with the LGP and check the optical characteristics of the LGP with them by simulation. Consequently, we could know the optical conditions of improving optical efficiency and optical uniformity in the LGP through the optical design. Also we confirmed that the issues of the hot spot and non-uniform color mixing in edge type LED could be solved by using the ${\bigwedge}$-shaped window color mixing bar.

Synthesis of Lu3Al5O12:Ce3+ Nano Phosphor by Coprecipitation Method, and Their Optical Properties (공침법을 이용한 Lu3Al5O12:Ce3+ 나노 형광체 합성과 광학적 특성 분석)

  • Kang, Taewook;Kang, Hyeonwoo;Kim, Jongsu;Kim, Gwangchul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.51-56
    • /
    • 2019
  • LuAG:Ce(Lu3Al5O12:Ce3+) nano phosphor were synthesized by applying the coprecipitation method. It is used to increase the color rendering of phosphor ceramic plate for high power LEDs and laser lighting. Internal quantum efficiency and absorption of LuAG:Ce nano phosphor are 51.5 % and 64.4 %, respectively, which is higher than the previously studied nano phosphors. The maximum absorption wavelength of this phosphor is 450 nm blue light, and the emission wavelength is 510 nm. The emission wavelength shifted to longer wavelength when the concentration of Ce increased in the heat treatment of the reducing atmosphere. Thermal quenching of LuAG nano phosphor was 70 % at 200 ℃, it was explained by their significant quenching of all raman scattering modes, implying the restriction of electron-phonon couplings caused by their defects.

Thermally assisted IRSL and VSL measurements of display glass from mobile phones for retrospective dosimetry

  • Discher, Michael;Kim, Hyoungtaek;Lee, Jungil
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.429-436
    • /
    • 2022
  • Investigations of retrospective dosimetry have shown that components of mobile phones are suitable as emergency dosimeters in case of radiological incidents. For physical dosimetry, components can be read out using optically stimulated luminescence (OSL), thermoluminescence (TL) and phototransferred thermoluminescence (PTTL) methods to determine the absorbed dose. This paper deals with a feasibility study of display glass from modern mobile phones that are measured by thermally assisted (Ta) optically stimulated luminescence. Violet (VSL, 405 nm) and infrared (IRSL, 850 nm) LEDs were used for optical stimulation and two protocols (Ta-VSL and Ta-IRSL) were tested. The aim was to systematically investigate the luminescence properties, compare the results to blue stimulated Ta-BSL protocol (458 nm) and to develop a robust measurement protocol for the usage as an emergency dosimeter after an incident with ionizing radiation. First, the native signals were measured to calculate the zero dose signal. Next, the reproducibility and dose response of the luminescence signals were analyzed. Finally, the signal stability was tested after the storage of irradiated samples at room temperature. In general, the developed Ta-IRSL and Ta-VSL protocols indicate usability, however, further research is needed to test the potential of a new protocol for physical retrospective dosimetry.

Effect of LED mixed light conditions on the glucosinolate pathway in brassica rapa (배추 유묘의 글루코시놀레이트 합성 기작에 미치는 LED 혼합광의 효과)

  • Moon, Junghyun;Jeong, Mi Jeong;Lee, Soo In;Lee, Jun Gu;Hwang, Hyunseung;Yu, Jaewoong;Kim, Yong-Rok;Park, Se Won;Kim, Jin A
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.245-256
    • /
    • 2015
  • In the agricultural industries, LEDs are used as supplementary, as well as main lighting sources in closed cultivation systems. In cultivation using artificial light sources, various light qualities have been tried to supplement fluorescent lamps to promote plant growth and metabolism. Microarray analysis of Brassica rapa seedlings under blue and fluorescent mixed with blue light conditions identified changes in three genes of the glucosinolate pathway. This attracted attention as functional materials highly expressed 3.6-4.6 fold under latter condition. We selected four more genes of the glucosinolate pathway from the Brassica database and tested their expression changes under fluorescent light mixed with red, green, and blue, respectively. Some genes increased expression under red and blue mixed conditions. The Bra026058, Bra015379, and Bra021429; the orthologous genes of CYP79F1, ST5a, and FMOGS-OX1 in Arabidopsis, are highly expressed in Brassica rapa under fluorescent mixed with blue light conditions. Further, Bra029355, Bra034180, Bra024634, and Bra022448; the orthologous genes of MAM1, AOP3, UGT74B1, and BCAT4 in Arabidopsis, are highly expressed in Brassica rapa under fluorescent mixed with red light conditions. The various light conditions had unique effects on the varieties of Brassica, resulting in differences in glucosinolate synthesis. However, in some varieties, glucosinolate synthesis increased under mixed blue light conditions. These results will help to construct artificial light facilities, which increase functional crops production.

Microprogation And Environment Conditions Affecting On Growth Of In Vitro And Ex Vitro Of A. Formosanus Hay

  • Ket, Nguyen-Van;Paek, Kee-Yoeup
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2002.11a
    • /
    • pp.29-30
    • /
    • 2002
  • The goal of this research was to develop the effectiveness of in vitro culture method for A. formosanus and study the environment in vitro conditions affecting on growth. The first series of experiments were examined to investigate the response of three different basal media, MS (Murashige and Skoog, 1962), Knudson (KC; Knudson, 1946) and modified hyponex on growth and multiplication during in vitro culture. Multiple shoot proliferation was induced in shoot tip explants on Hyponex (H3) media supplemented with BA (1 mg1$\^$-1/) or TDZ (1-2 mg1$\^$-1/). Addition of activated charcoal (1%) to the TDZ containing medium promoted rapid shoot tip proliferation (11.1 shoots per explant) but the same medium had an opposite effect resulting in poor proliferation in the nodal explants. However, the regenerated shoots had slow growth rate and failed to elongate. This problem was overcome by transferring the shoot clumps to a hormone free H3 media supplemented with 2% sucrose and 0.5% activated charcoal. Using bioreactor culture for scaling up was also shown the best way for multiple shoot induction and growth of this plant. The second series of experiments was studied to investigate the effect of physical environment factors on growth of in vitro plantlets. The Anoectochilus formosanus plantlets were cultured under different air exchange rate (0.1, 0.9, 1.2h$\^$-1/), without sucrose or supplement 20g.1$\^$-1/ (photoautotrophic or photomixotrophic, respectively), and different photosynthesis photon flux (40, 80, 120 ,${\mu}$mol.m$^2$.s$\^$-1/- PPF). Under non-enrichment CO$_2$ treatment, slow growth was observed in photoautotrophical condition as compared with photomixotrophical condition on shoot height, fresh weigh and dry weight parameters; High air exchange (1.2.h-l) was found to be inadequate for plant growth in photomixotrophical condition. On the contrary, under CO$_2$, enrichment treatment, the plant growth parameters were sharply (visibly) improved on photoautotrophic treatments, especially on the treatment with air exchange rate of 0.9.h-1. The growth of plant in photoautotrophic condition was not inferior compared with photomixotrophic, and the best growth of plantlet was observed in treatment with low air exchange rate (0.9.h-1). Raising the PPF level from 80 to 120${\mu}$mol.m$\^$-2/.s$\^$-1/ decreased the plant height, particularly at 120${\mu}$mol.m$\^$-2/.s$\^$-1/ in photoautotrophic condition, fresh weight and dry weight declined noticeably. At the PPF of 120${\mu}$mol.m$\^$-2/,s$\^$-1/, chlorophyll contents lowed compared to those grown under low PPF but time courses of net photosynthesis rate was decreased noticeably. Light quality mainly affected morphological variables, changes of light quality also positively affected biomass production via changes in leaf area, stem elongation, chlorophyll content. Plant biomass was reduced when A. formosanus were grown under red LEDs in the absence of blue wavelengths compare to plants grown under supplemental blue light or under fluorescent light. Stem elongation was observed under red and blue light in the present experiment. Smaller leaf area has found under blue light than with other lighting treatments. Chlorophyll degradation was more pronounced in red and blue light compared with white light or red plus blue light which consequent affected the photosynthetic capacity of the plant. The third series of experiment were studied to investigate the effect of physical environment factors on growth of ex vitro plants including photosynthesis photon flux (PPF), light quality, growing substrates, electrical conductivity (EC) and humidity conditions. In the present experiments, response of plant on PPF and light quality was similar in vitro plants under photosynthesis photon flux 40${\mu}$mol.m,$\^$-2/.s$\^$-1/ and white light or blue plus red lights were the best growth. Substrates testing results were indicated cocopeat or peat moss were good substrates for A. formosanus growth under the greenhouse conditions. In case of A. formosanus plants, EC is generally maintained in the range 0.7 to 1.5 dS.m-1 was shown best results in growth of this plant. Keeping high humidity over 70% under low radiation enhanced growth rate and mass production.

  • PDF

Effect of LEDs on shoot multiplication and rooting of rare plant Abeliophyllum distichum Nakai (희귀 수종 미선나무(Abeliophyllum distichum Nakai.)의 기내 증식 및 발근에 미치는 LED (light emitting diode) 효과)

  • Lee, Na Nyum;Choi, Yong Eui;Moon, Heung Kyu
    • Journal of Plant Biotechnology
    • /
    • v.41 no.2
    • /
    • pp.94-99
    • /
    • 2014
  • This study was conducted to elucidate the effect of light sources and explant types on in vitro shoot multiplication and rooting of a rare and endangered plant Abeliophyllum distichum. Both apical buds and axillary buds were used as explants under 4 different light sources, cool white florescent light (F), 100% blue light-emitting diode (LED) (B), 50% blue and 50% red LED mixture (BR), and 100% red LED (R). Clear difference was observed in terms of shoot proliferation by light sources types but not by position-dependent explant types. Multiple shoot induction rates were enhanced under both B and BR light sources. Spontaneous rooting was induced in shoot induction medium under B light source. Both the rates of rooting and numbers of roots per explant were higher in apical bud explants compared to axillary bud explants. Interestingly R light source stimulated shoot elongation but inhibited root development. Therefore, our results suggest that the use of apical bud explants under B or BR light sources is suitable for in vitro micropropagation of a rare and endangered plant species, Abeliophyllum distichum.

The Effect of Blue and Red LEDs Irradiation on The Growth Characteristics and Ginsenoside Content of Panax ginseng C. A. Meyer (청색과 적색의 혼합LED광 처리가 인삼의 생육 및 진세노사이드 함량에 미치는 영향)

  • Seong, Bong-Jae;Kim, Hyun-Ho;Cho, Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.70-74
    • /
    • 2015
  • An LED plant factory farm is an alternative way to grow crops regardless of weather, season, and blight in such times of climate change. In recent years, it is a currently active and vibrant research field. The industry, which ranges from leaf vegetables to high value products, is expanding. This study was conducted to test tthe response of LED (Light-emitting diode) irradiation on the growth characteristics and ginsenoside levels indoors, in order to find out suitable light conditions. Ginseng seedling was transplanted from a styrofoam pot ($L{\times}W{\times}D$:$495{\times}315{\times}215mm$, inside diameter) into a closed plant production system in four blue LED (BL) and red LED (RL) different ratios of 1:1, 1;2, 1:3, 1:4 in a temperature range of $20{\sim}25^{\circ}C$, relative humidity of between 55 and 65%, and a 12-hour photoperiod. The LED irradiation shows the highest levels were found at 1:1 of BL and RL ratio at $61.21{\mu}mol\;s^{-l}m^{-2}$, 1:2 ratio $68.55{\mu}mol\;s^{-l}m^{-2}$, 1:3 ratio $63.85{\mu}mol\;s^{-l}m^{-2}$ and 1:4 ratio $62.41{\mu}mol\;s^{-l}m^{-2}$ from highest to lowest respectively. After analyzing from shoot and root 2 yers old ginseng plant which were cultivated under 1:3 irradiation of BL and RL ratio, it generally showed a positive effect under a 1:3 ratio of BL and RL.

Changes in Fermentation Properties and Phenolic Contents of Muscat Bailey A Wine by LED Irradiation Treatment (LED irradiation이 Muscat bailey A 와인의 발효 및 페놀성 화합물의 변화에 미치는 영향)

  • Kim, Sang Wook;Han, Gi Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.4
    • /
    • pp.350-356
    • /
    • 2015
  • There have been several studies on role of hormesis with light stimulation, however, the influence of light on fermentation is still poorly understood. In this study the relationship between LED (light emitting diode) hormesis and ethanol fermentation for Muscat bailey A wine was investigated. Two LEDs, one blue ($453{\pm}4nm$) and one green ($522{\pm}3nm$), were used. Both LED groups showed an inhibited production of lactic acid. The blue LED stimulated the growth of the yeast in early stage of the fermentation. Polyphenolic compounds and their antioxidant abilities were significantly increased by the green LED. These results demonstrate that LED irradiation must bring about hormesis and affect the growth rate of yeast in the early stage of the fermentation, and the contents of phytochemicals during fermentation. These findings indicate the possible application of LED hormesis for the wine fermentation. Further studies are needed to understand how LED irradiation induces hormesis effects during the fermentation process.

Effect of Light Wavelengths on the Mycelial Browning of Lentinula edodes Strain Sanjo 701ho (광 파장이 표고 품종 산조 701호 균사의 갈변에 미치는 영향)

  • Seo, Dong-Seok;Koo, Chang-Duck
    • The Korean Journal of Mycology
    • /
    • v.47 no.1
    • /
    • pp.63-73
    • /
    • 2019
  • Mycelial browning, which protects the organism from contamination and moisture loss, is essential for sawdust cultivation of Lentinula edodes. The effects of light and light wavelengths on the mycelial browning of the L. edodes Sanjo 701ho strain, and the characteristics of its brown hyphae, were investigated. After the mycelia were cultured on potato dextrose agar medium under fluorescent lamps covered with colored cellophane filters (red, green, and blue) or under light emitted diodes (LED), with wavelengths ranging from 400 to 700 nm (far-red, red, green, and blue), for 14 h per day for 40 days, the mycelial browning rate was measured. The wavelength of fluorescent lamps, which range from 300 to 1,100 nm, was reduced to 360 to 1,022 nm with the use of three colored cellophane filters and the photosynthetic photon flux density was reduced by 42 to 71 % depending on the light wavelength. The browning rate by colony area of mycelia exposed to light was at an average of 64 %, whereas, that of unexposed mycelia was only 5 %. The browning rate was 0.02 % in far-red, 1.5 % in red, 53.8 % in green, 57.3 % in blue, and 64.0 % in fluorescent light. The white mycelia were resilient with actively growing hyphae, filled with cytoplasm, and thin cell walls less than $1{\mu}m$ thick. Conversely, the brown mycelia possessed dead, hard hyphal structures without cytoplasm, but with approximately $2-4{\mu}m-thick$-thick cell walls. In conclusion, lights of varying wavelengths, especially short-wavelength LEDs, are effective for forming dead, brown mycelia of L. edodes, thus, forming a protective functional layer for its living white mycelia.

Effect of different light sources and ventilation on in vitro shoot growth and rooting of a rare and endangered species, Tsuru-rindo(Tripterospermum japonicum) (희귀 및 멸종위기 식물 덩굴용담의 기내생장에 미치는 광질 및 환기효과)

  • Moon, Heung-Kyu;Park, So-Young
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.215-221
    • /
    • 2008
  • Effects of light generated by LEDs on shoot growth and rooting of Tsuru-rindo(Tripterospermum japonicum) were evaluated. Apical shoots(one or two node with 3-4 leaves) were cultured on MS basal medium with 3% sucrose and maintained for four weeks under five different light qualities: fluorescent lamp(F), 100% red LED(R), 70% red LED+30% blue LED(R7B3), 50% red LED+50% blue(R5B5), or 100% blue LED(B). Rooting was promoted by both red light and fluorescent lamp, and the effect was further promoted under the ventilation. Red light enhanced shoot node elongation, whereas blue light appeared to suppress it. Growth of shoots and leaves were enhanced under the ventilation irrespective of the different light qualities. Under the ventilated condition, total fresh weight of plants was highest in R7B3 LED as 257.7 mg per plant. Dry matters, which are used for index of plant growth, were lowest under red light, whereas it was highest under blue light. The dry matter was inclined to getting higher by ascending the ratio of blue light and red light. Total chlorophyll content was highest in both R7B3 LED and R5B5 LED under ventilation as 29.5 and 31.2, respectively. Above results suggest that light quality optimization could be an important factor to foster in vitro growth of the species. Ventilation treatment appeared to be another important factor to induce normal shoot growth and rooting.