• Title/Summary/Keyword: Blue Fluorescent

Search Result 276, Processing Time 0.031 seconds

Fabrication of Simple White OLED with High Color Temperature for Medical Display Applications

  • Sung, Chang-Je;Kim, Jun-Jung;Lee, Jae-Man;Choi, Hong-Seok;Han, Chang-Wook;Lee, Nam-Yang;Ahn, Byung-Chul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.489-492
    • /
    • 2009
  • We report white OLED with high color temperature based on simple stacked structure for medical display applications. White OLED was fabricated with two emitting materials of fluorescent blue dopant and phosphorescent yellow dopant. We achieved luminance efficiency of 16.2cd/A and CIE color coordinates of (0.305, 0.317) at 10mA/$cm^2$. In particular, the correlated color temperature was higher than 7,000K, enough for display applications.

  • PDF

Temperature Measurements in a Microfluidic Chip with Polydiacetylene Sensor (폴리다이아세틸렌을 이용한 미세유동칩 내의 온도 측정)

  • Jang, Young-Sik;Ryu, Sung-Min;Song, Si-Mon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2696-2699
    • /
    • 2008
  • Microfluidic chips have been frequently utilized to perform biochemical analysis, like cell culture, because they reduce the consumptions of analytes and reagents and automate multi-step analysis processes. It is often critical to monitor temperature in a microchannel for the analyses in order to control a reaction condition of bio or chemical molecules. We propose a novel method to monitor temperature of a microchannel flow by using polydiacetylene (PDA), a conjugated polymer, that has a unique property to transform its color from visible blue to fluorescent red by thermal stress. We inject PDA sensor droplets generated by hydrodynamic instability into a microchannel with a microheater incorporated on the channel bottom. Also, we change the channel temperature by providing the different electric power to the microheater. The results show that the florescence intensity of PDA sensor droplets linearly increases in response to the flow temperature increase within a certain range.

  • PDF

Study on ICT convergence in Lentinula edodes (Shiitake) cultivation system using Automated container (컨테이너형 수출용 버섯식물공장시스템설계 및 표고버섯 생산 연구)

  • Jo, Woo-Sik;Lee, Sung-Hak;Park, Woo-Ram;Shin, Seung-Ho;Park, Chang-Min;Oh, Ji-Hyun;Park, Who-Won
    • Journal of Mushroom
    • /
    • v.15 no.4
    • /
    • pp.264-268
    • /
    • 2017
  • In the 21st century, information and communication technology (ICT) worldwide presents a new vision for agriculture. Time and place, as well as the high-tech industry, to overcome barriers to the fusion of the so-called "smart agriculture," are changing the agricultural landscape. Core container production in precision agriculture for mushroom cultivation, optimal temperature, humidity, irradiation, self-regulation of factors such as carbon dioxide, and environment for mushroom cultivation were adopted. Lentinula edodes (shiitake) is an edible mushroom native to East Asia, cultivated and consumed in many Asian countries. It is considered to be medicinal in certain practices of traditional medicine. We used different controlled light sources (Blue-Red-White-combined LED, blue LED, red LED, and fluorescent light) with different LED radiation intensities (1.5, 10.5, and $20.5{\mu}mol/m^2s$ for LEDs) to compare growth and development. Mushrooms were treated with light in a 12-hour-on/12-hour-off cycle, and maintained in a controlled room at $19{\sim}21^{\circ}C$, with 80~90% humidity, and an atmospheric $CO_2$ concentration of 1,000 ppm for 30 days. Growth and development differed with the LED source color and LED radiation intensity. Growth and development were the highest at $10.5{\mu}mol/m^2s$ of blue LED light. After harvesting the fruit bodies, we measured their weight and length, thickness of pileus and stipe, chromaticity, and hardness. The $10.5{\mu}mol/m^2s$ blue-LED-irradiated group showed the best harvest results with an average individual weight of 39.82 g and length of 64.03 mm, pileus thickness of 30.85 mm and pileus length of 43.22 mm, and stipe thickness of 16.96 mm with fine chromaticity and hardness. These results showed that blue LED light at $10.5{\mu}mol/m^2s$ s exerted the best effect on the growth and development of L. edodes (shiitake) mushroom in the ICT-system container-type environment.

Effect of LED and QD-LED(Quantum Dot) Treatments on Production and Quality of Red Radish(Raphanus sativus L.) Sprout (LED와 QD-LED(Quantum Dot) 광처리가 적무 새싹의 생산과 품질에 미치는 영향)

  • Choi, In-Lee;Wang, Lixia;Lee, Ju Hwan;Han, Su Jung;Ko, Young-Wook;Kim, Yongduk;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.265-272
    • /
    • 2019
  • The purpose of this study was to investigate the effects of LED and QD-LED (Quantum Dot) irradiation on seed germination, antioxidant ability, and microbial growth, during red radish (Raphanus sativus L.) sprouts cultivation. Irradiated light was blue, red, blue + red and blue + red + far red (QD-LED) lights, and the controls were a fluorescent lamp (FL), and dark condition. Germination rate of red radish was highest in the dark condition. The plant height and fresh weight of red radish sprouts that irradiated each light for 24 hrs after 7 days growing in dark condition, did not shown significantly difference among treatments. After 24 hrs of light irradiation, cotyledon green was best in blue + red light, and the red hypocotyl was excellent in blue light and QD-LED light. DPPH and phenol contents were high in dark and blue + red light treatment, and anthocyanin content was high in blue light and QD-LED light. Total aerobic counts were similar in all treatments and did not show bactericidal effect, whereas E. coli count was lowest in QD-LED light treatment, and yeast and mold counts were lowest in FL only treatment. Results suggest that when red radish seeds were germinated in dark condition and cultivated for 7 days as sprouts, and then treated with blue light or QD-LED light for 24 hrs, the seeds produced good quality red radish sprouts with greenish cotyledon, reddish hypocotyl, high anthocyanin content, and lower level of E coli contamination.

Spore Germination and Prothallium Development Conditions of Lygodium japonicum (Thunb.) Sw. (실고사리(Lygodium japonicum (Thunb.) Sw.) 포자발아와 전엽체 발달조건)

  • Kwon, Hyuk Joon;Shin, So Lim;Lim, Yun Kyung;Kim, Soo-Young
    • Korean Journal of Plant Resources
    • /
    • v.29 no.4
    • /
    • pp.400-406
    • /
    • 2016
  • This study was conducted to determine the optimal conditions of growth medium, temperature, and light quality for efficient propagation of Lygodium japonicum spores. The rate of spore germination and prothalium development was high in Knop and 1/8MS and 1/4MS media, which had low mineral content; in particular, the germination rate exceeded 74%, and the germinated spores developed into heart-shaped prothallia. However, in Knop‘s medium with the lowest mineral content, a rapid prothallium senescence was observed; in 1/4MS medium, prothallium development was delayed. Germination rate increased with the increase in temperature and reached its maximum, 86.7%, at 30℃; however, at this temperature, the prothallia were thinner and abnormal development of rhizoids was observed compared to normally developed prothallia and rhizoids at 25℃. Therefore, the results suggested that the optimal temperature for L. japonicum spore germination was 25℃. The rate of germination was also measured under different light conditions, and the highest rate of 90.6% was observed under LED red light compared to fluorescent (77.2%) or LED blue (5.4%) lights. The germinated spores developed into heart-shaped prothallia under LED red light; however, 15 days after seeding, prothallium development decreased and the became elongated. In contrast, a normal and continuous development of heart-shaped prothallia was observed under fluorescent light.

Growth Characteristics of Microalgae Scenedesmus obliquus by LED Light Source (LED 광원에 따른 미세조류 Scenedesmus obliquus의 성장 특성)

  • Yoo, Yong Jin;Kim, Song Yi;Lee, Geon Woo;Lee, Young Bok;Kim, Jin Woo;Kim, Ho Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.70-77
    • /
    • 2020
  • Microalgae are independent organisms that perform photosynthesis and can alter the culture environment to increase accumulation of useful substances derived from microalgae. In this study, cell growth was measured by incubation for 39 days using MBBM, Neo medium, and seven light sources, which is the main factor affecting cell growth of microalgae S. obliquus. In the case of S. oliquus, which grew in MBBM and Neo medium, cell growth was highest under fluorescent light sources and Red2 LED (R660) light sources, and cell growth was lowest under Infra Red LED (R741) light sources. The average cell growth rate was 17.7% for MBBM and 15.4% for Neo. Comparing the effects of dry cell weight of Neo medium containing nutrients on the production of aquatic plants, MBBM and dry cell weight of Neo resulted in higher cell growth than Neo medium under all LED light sources except for Blue LED (B450). This proves that MBBM is more suitable for increasing the cell growth of microalgae than Neo medium and confirms that light source selection is important in the production of useful materials through mass cultivation of microalgae in the future.

Effect of Lighting Condition of Eco Energy LED on Growth and Flowering Quality of 'Viking' Rose (친환경에너지 LED 광 조건에 따른 '바이킹' 장미의 생장과 개화품질에 미치는 영향)

  • Han, Tae-Ho;Ahn, Young-Sang;Choi, Hyun-Sug
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.1
    • /
    • pp.99-114
    • /
    • 2016
  • This study was conducted to evaluate effects of various eco light sources with various lighting distance in 'Viking' rose (Rosa spp.) on the growth and flowering quality to be applied for farm sites. Treatment included 10-, 20-, and 30-RL (-BL, -RBL, -FL, and -IL), which referred to red LED (blue LED, red+blue LED, fluorescent, and incandescent) lighting at 10 cm, 20 cm, 30 cm respectively, apart from flowers. NL referred to natural light as a control. Growth and flowering of 'Viking' rose were non-destructively measured at 4, 6, and 8 weeks after treatment (WAT). FL treatment increased plant height at 4, 6, and 8 WAT, regardless of lighting distance, with the shortest height observed for the NL-treated flowers. 30 RL treatment also increased plant height at 6 and 8 WAT. Stem diameter and number of leaves were not significantly different for all the treatments at 8 WAT, with the lowest values observed for RBL treated-flowers among the light source treatments. Number of root was the greatest for the 30 BL-treated flowers (10.0) but the fewest for the 30 FL (4.7). Length of flower neck at 6 WAT was the extended by 6~7 cm in the 10 FL and 20 FL treatments as well as by 5~6 cm in the 20 RL and 30 RL treatments, inducing 100% of flowering. NL increased $a^*$ (29) of flower color, with the lowest value (10) observed for 20 RL. All things considered, 30 RL would be the best interaction treatment of source and distance of eco light to improve plant height and flowering quality of 'Viking' rose.

Effects of Light Quality and Lighting Type Using an LED Chamber System on Chrysanthemum Growth and Development Cultured In Vitro (LED Chamber System을 이용한 광질 및 광조사 방법 제어가 국화 배양소식물체의 생장에 미치는 영향)

  • Heo, Jeong-Wook;Lee, Yong-Beom;Chang, Yu-Seob;Lee, Jeong-Taek;Lee, Deog-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.374-380
    • /
    • 2010
  • This experiment was carried out to investigate the effect of light qualities and lighting types provided by LED Chamber System which designed by Rural Development Administration on growth and development of Chrysanthemum (Dendranthema grandiflorum L., cv. 'Cheonsu') plantlet cultured in vitro. The explants of single-node cuttings were exposed to monochromic or mixture radiation of blue, red, or green under continuous and intermittent lighting for 42 days. The intermittent lighting of 20 sec. on and off per minute significantly stimulated shoot elongation with lower number of internodes compared with continuous lighting treatments. However, continuous blue, red, or green light gave greater dry weight comparing the intermittent lighting, and the lowest weight was recorded at the continuous fluorescent lamp. Otherwise, the plantlet growth in dry weight or leaf area was inhibited by the green light controlled at 50 times intermittence but internode elongation was significantly increased. These results showed that the plantlets were successfully grown under the LED Chamber System controlled with different light qualities and lighting types. Quantitative growth of the plantlets was improved under the shorter photoperiod with a intermittent lighting cycle compared with continuous lighting using fluorescent lamps. It is concluded that the growth and development of in vitro plantlets such as single-node cuttings can be achieved by the controlling of light quality or lighting type during the photoperiod per day with a lower electric cost compared with conventional continuous lighting system.

Evaluation of Individual Glucosinolates, Phytochemical Contents, and Antioxidant Activities under Various Red to Far-Red Light Ratios in Three Brassica Sprouts (적색/원적색광 조사 비율에 따른 3종 배추과 채소 새싹의 Glucosinolate 함량 및 항산화 기능성 평가)

  • Jo, Jung Su;Lee, Jun Gu
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.415-423
    • /
    • 2018
  • The aim of this study was to evaluate the individual glucosinolate (GSL), total phenol, total flavonoid, and vitamin C content, and antioxidant activity under various light quality condition, mainly focusing on red (R) to far-red (FR) light ratios in three Brassica sprouts (radish, Chinese cabbage, and broccoli). Three R/FR ratio of 0.6, 1.3, and 2.0 were exposed to 5-day old sprouts for 48 h in a controlled environment, and the targeted phytochemical contents and antioxidant activities were compared with three separate control plot of dark, fluorescent, and red:blue 8:2 conditions. Total GSL content was highest in broccoli among the cultivars throughout the respective treatments, and increased with the increasing of R/FR ratio in the broccoli sprouts, while the content showed non-significant results in the Chinese cabbage sprouts. The progoitrin, a major GSL in Chinese Cabbage and broccoli, content decreased by upto 38% and 69%, respectively, with decreasing the R/FR ratio compared to the control plots (fluorescent, red:blue 8:2, and dark condition). The contents of phenol, flavonoid, and vitamin C were lowest in dark condition in all the three Brassica sprouts. The total phenol content and antioxidant activities increased with decreasing the R/FR ratio in all the Brassica sprouts, while total flavonoid and vitamin C content showed different patterns depending upon the Brassica sprouts. These results suggest that additional use of FR is expected to improve the functional quality of Brassica sprouts in different ways.

Effects of Different Light Wavelengths on the Growth of Olive Flounder (Paralichthys olivaceus) (빛의 파장이 넙치 Paralichthys olivaceus의 성장에 미치는 영향)

  • Benedict, Ndada Regina;Kim, Yeo-Reum;Kim, Jong-Myoung
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.311-317
    • /
    • 2019
  • To investigate the effects of light on growth in fish, olive flounder (Paralichthys olivaceus) were reared under four kinds of monochromatic light-emitting diodes (LEDs) at violet (400 nm), blue (465 nm), green (508 nm), and red (635 nm) wavelengths, along with a white fluorescent lamp as control. The rearing experiments were carried out with 15 fish per tank under different wavelength illumination at the same intensity. After rearing the fish under a 12 hr:12 hr light:dark photoperiod for 60 days, percentage increases in weight gain of $269.92{\pm}13.02$, $363.21{\pm}3.74$, $433.22{\pm}4.83$, $290.17{\pm}11.83$, and $340.74{\pm}26.58%$ and increases in specific growth rates (SGR) of $2.18{\pm}0.06$, $2.56{\pm}0.07$, $2.79{\pm}0.01$, $2.27{\pm}0.05$, and $2.47{\pm}0.10$ were observed in fish grown under the illumination of red, blue, green, and violet LEDs and the white fluorescent light, respectively. The results show faster growth in fish reared under green LEDs, but slower growth in those reared under red light. Differences in most blood parameters were minor, aside from an increased level of glutamic oxaloacetic transaminase in the fish grown under red LED illumination. Histological analysis of the retina showed few changes in the ratio of photoreceptor layer thickness to total retina thickness in fish reared under the green LEDs compared to those in other illumination groups. These results indicate that green LED light can foster increased growth in olive flounder with no distinct harmful effects on their light-sensitive photoreceptor layers.