DOI QR코드

DOI QR Code

Effect of Lighting Condition of Eco Energy LED on Growth and Flowering Quality of 'Viking' Rose

친환경에너지 LED 광 조건에 따른 '바이킹' 장미의 생장과 개화품질에 미치는 영향

  • 한태호 (전남대학교 농업과학기술연구소, 전남대학교 농업생명과학대학 원예학과) ;
  • 안영상 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 최현석 (대구가톨릭대학교 원예학과)
  • Received : 2015.12.03
  • Accepted : 2015.12.28
  • Published : 2016.02.29

Abstract

This study was conducted to evaluate effects of various eco light sources with various lighting distance in 'Viking' rose (Rosa spp.) on the growth and flowering quality to be applied for farm sites. Treatment included 10-, 20-, and 30-RL (-BL, -RBL, -FL, and -IL), which referred to red LED (blue LED, red+blue LED, fluorescent, and incandescent) lighting at 10 cm, 20 cm, 30 cm respectively, apart from flowers. NL referred to natural light as a control. Growth and flowering of 'Viking' rose were non-destructively measured at 4, 6, and 8 weeks after treatment (WAT). FL treatment increased plant height at 4, 6, and 8 WAT, regardless of lighting distance, with the shortest height observed for the NL-treated flowers. 30 RL treatment also increased plant height at 6 and 8 WAT. Stem diameter and number of leaves were not significantly different for all the treatments at 8 WAT, with the lowest values observed for RBL treated-flowers among the light source treatments. Number of root was the greatest for the 30 BL-treated flowers (10.0) but the fewest for the 30 FL (4.7). Length of flower neck at 6 WAT was the extended by 6~7 cm in the 10 FL and 20 FL treatments as well as by 5~6 cm in the 20 RL and 30 RL treatments, inducing 100% of flowering. NL increased $a^*$ (29) of flower color, with the lowest value (10) observed for 20 RL. All things considered, 30 RL would be the best interaction treatment of source and distance of eco light to improve plant height and flowering quality of 'Viking' rose.

본 시험은 농가현장에 적용될 수 있는 실용화 기술을 개발하기 위하여 친환경 LED 광원과 광원거리가 '바이킹'분화장미의 생장과 개화품질에 어떠한 영향을 미치는 지를 구명하자 수행되었다. 시험처리는 꽃으로부터 10 cm, 20 cm, 30 cm 거리에서 각 광원을 조사하였고 각 처리구의 명칭은 다음과 같이 표기하였다. 10 cm (20 cm, 30 cm)거리에서 LED 적색, LED청색, LED 적색+청색, 형광등, 백열등 처리: 10 RL (20 RL, 30 RL), 10 BL (20 BL, 30 BL), 10 RBL (20 RBL, 30 RBL), 10 FL (20 FL, 30 FL), 10 IL (20 IL, 30 IL)로 하였다. 대조구로 자연광을 처리하였고 NL로 표기하였다. 처리 4주, 6주, 8주 후에 장미의 생장과 개화율을 비파괴적으로 조사하였다. 4, 6, 8주차에서 광원거리에 상관없이 FL 처리에서 초장이 가장 길었고 NL처리에서 가장 짧았다. 30 RL 처리에서 또한 6주와 8주차에 초장이 크게 신장되었다. 경경과 엽수는 8주차에는 처리구 간에 통계적으로 유의성 있는 차이가 나타나지 않았고 광원간 비교에서는 RBL 처리에서 가장 낮은 수준이 관찰되었다. 발근수는 30 BL 처리구에서 10.0개로 가장 많았고 30 FL이 4.7개로 가장 적었다. 6주차에 꽃목길이는 10 FL과 20 FL 처리에서 가장 증가되었고(6~7 cm) 20 RL과 30 RL에서도 연장효과가 확인되었으며(5~6 cm), 이러한 처리구들에서 100%의 개화율을 보였다. 화색의 $a^*$값은 NL처리구에서 가장 높았고(29) 20 RL에서 가장 낮았다(10). 이에 따라 '바이킹'장미의 크기와 개화품질을 고려하면 30 RL 처리가 가장 효과적인 친환경 광조건이었던 것으로 판단된다.

Keywords

References

  1. Bae, S. G., J. H. Kim, S. J. Park, and J. C. Kim. 2008. Influence of forcing cultivation time on cut flower, root quality, and yield in peony (Paeonia lactiflora Pall. cv. Taeback). J. Medical Crop Sci. 16: 421-426.
  2. Choi, S. Y., M. J. Kil, Y. S. Kwon, J. A. Jung, and S. K. Park. 2012. Effect of different light emitting diode (LED) on growth and flowering in chrysanthemum. Flower Res. J. 20: 128-133.
  3. Choi, M. K., G. Y. Baek, S. J. Kwon, Y. C. Yoon, and H. T. Kim. 2014. Effect of LED light wavelength on lettuce growth, vitamin C and anthocyanin contents. Protected Hort. Plant Fac. 23: 19-25. https://doi.org/10.12791/KSBEC.2014.23.1.019
  4. Ebisawa, M., K. Shoji, M. Kato, K. Shimomura, F. Goto, and T. Yoshihara. 2008. Supplementary ultraviolet radiation B together with blue light at night increased quercetin content and flavonol synthase gene expression in leaf lettuce (Lactuca sativa L.). Environ. Control Biol. 46: 1-11.
  5. Goins, G. D., N. C. Yorio, M. M. Sanwo, and C. S. Brown. 1997. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J. Exp. Bot. 48: 1407-1413. https://doi.org/10.1093/jxb/48.7.1407
  6. Hogewoning, S. W., G. Trouwborst, H. Maljaars, H. Poorter, W. van Ieperen, and J. Harbinson. 2010. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot. 61: 3107-3117. https://doi.org/10.1093/jxb/erq132
  7. Johkan, M., K. Shoji, F. Goto, S. N Hashida, and T. Yoshihara. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45: 1809-1814.
  8. Kim, S. J., E. J. Hahn, J. W. Heo, and K. Y. Paek. 2004. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci. Hortic. 101: 143-151. https://doi.org/10.1016/j.scienta.2003.10.003
  9. Kojima, M., Y. Nakano, and H. Fujii. 2010. Light stimulation triggered expression of genes coding for vacuolar proton-pump enzymes V-ATPase and V-PPase in buckwheat. Biosci. Biotechnol. Biochem. 74: 1507-1511. https://doi.org/10.1271/bbb.100283
  10. Kwon, Y. S., S. Y. Choi, M. J. Kil, B. S. You, J. A. Jung, and S. K. Park. 2013. Effect of night break treatment using red LED (660 nm) on flower bud initiation and growth characteristics of chrysanthemum cv. 'Baekma', and cv. 'Jinba'. CNU J. Agric. Sci. 40: 297-303.
  11. Lee, J. J. and J. H. Hwang. 2014. Effect of day-length extension treatment using LED on growth and flowering of Freesia hybrid 'Yvonne'. Kor. J. Hort. Sci. Technol. 32: 794-802
  12. Massa, G. D., H. H. Kim, R. M. Wheeler, and C. A. Mitchell. 2008. Plant productivity in response to LED lighting. HortScience 43: 1951-1956.
  13. Miyashita, Y., Y. Kitaya, and T. Kozai. 1995. Effects of red and far-red light on the growth and morphology plantlets in vitro: using light emitting diode as a light source for micropropagation. Acta Hort. 393: 189-194.
  14. Okamoto, K., T. Yangi, S. Tanaka, T. Higuchi, Y. Ushida, and H. Watanabe. 1996. Development of plant growth apparatus using blue and red LED as artificial light source. Acta Hort. 440: 111-116.
  15. Ryan, K. G., E. E. Swinny, K. R. Markham, and C. Winefield. 2002. Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry 59: 23-32. https://doi.org/10.1016/S0031-9422(01)00404-6
  16. Stuefer, J. F. and H. Huber. 1998. Differential effects of light quantity and spectral light quality on growth, morphology and development of two stoloniferous Potentilla species. Oecologia 117: 1-8. https://doi.org/10.1007/s004420050624
  17. Terfa, M. T., K. A. Solhaug, H. R. Gislerod, J. E. Olsen, and S. Torre. 2013. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa x hybrida but does not affect time to flower opening. Physiol. Plant. 148: 146-159. https://doi.org/10.1111/j.1399-3054.2012.01698.x