• 제목/요약/키워드: Blowing Rate

검색결과 98건 처리시간 0.024초

익형의 기하학적 조건에 따른 축류팬의 성능에 관한 연구 (Effects of geometric conditions of blade on Performance of Axial Pan)

  • 안은영;김재원;정은주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.25-29
    • /
    • 2005
  • Axial fan is used for the supplement of large amount of flows. Axial blowers show relatively high efficiency of the system. The present model of axial fan is for cooling a condenser in an air-conditioning unit that exhibits tendency toward compact size. In order to realize the compact model, the width of an axial blade should be cut down in axial distance. Main interest lies on the performance of the axial blowing system with blades having shorter chord length. One of the important design parameters for axial fan is the shape of the blades of it. Design of blades includes the cross-sectional shape and its dimension, including the chord length. We consider two types of blades; one is NACA airfoil with normal chord length and the other is with shortening chord length by $10\%$ of normal airfoil. Axial blower with the modified blades is essential for the compact model of an air-conditioner. The other design parameters are same in the two cases. Using a wind tunnel follows ASHRAE standards carries out evaluation of performance of the system. Detail of flows around the blades is prepared by velocity measurements using PIV. According to performance estimation, the axial blower with short chord blade show quite close to the performance results, including flow rate and pressure rise, of the standard one. The reason of the two similar results is that the flowpatterns depend on Reynolds number based on the chord length of a blade. In this investigation, the critical chord length is found, in which the flows near the airfoil are so unstable and the performance of the system is decreased. A series of figures is for the detail information on the flow.

  • PDF

가스터빈 연소실 냉각을 위한 충돌제트/유출냉각기법에서 사각핀 설치에 따른 열/물질전달 특성 (Heat/Mass Transfer Characteristics in Impingement/Effusion Cooling System with Rectangular Fins for Combustor Liner Cooling)

  • 홍성국;이동호;조형희
    • 한국유체기계학회 논문집
    • /
    • 제8권4호
    • /
    • pp.39-47
    • /
    • 2005
  • The present study has been performed to investigate the influences of rectangular fins on heat transfer in an impingement/effusion cooling system with crossflow. To simulate the impingement/effusion cooling system with initial crossflow, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of the hole diameter. The crossflow passes between the plates, and various rectangular fins are installed on the plates. Reynolds number based on the hole diameter is fixed to 10,000 and the flow rate of crossflow is changed from 0.5 to 1.5 times of that of the impinging jet. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. Also to analyze the flow characteristics, a numerical calculation is performed. When rectangular fins are installed, the flow and heat transfer pattern is changed greatly from the case without fins. In the injection hole region, the jet impinges on effusion plate without deflection and wall jet spreads symmetrically. In the effusion region, the crossflow accelerates due to the decrease of cross-sectional area in the channel. Local heat/mass transfer coefficients are enhanced significantly compared to the case without fins. As the blowing ratio increases, the effect of rectangular fins against the crossflow becomes more significant and then the higher average heat/mass transfer coefficients are obtained than the case without fins. However, the increase of blockage effect gives more pressure loss in the channel.

가스터빈 연소실 냉각을 위한 충돌제트/유출냉각기법에서 사각핀 설치에 따른 열/물질전달 특성 (Heat/Mass Transfer Characteristics in Impingement/Effusion Cooling System with Rectangular Fins for Combustor Liner Cooling)

  • 홍성국;이동호;조형희
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.289-296
    • /
    • 2004
  • The present study has been performed to investigate the influences of rectangular fins on heat transfer in an impingement/effusion cooling system with crossflow. To simulate the impingement/effusion cooling system with initial crossflow, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of the hole diameter. The crossflow passes between the plates, and various rectangular fins are installed on the plates. Reynolds number based on the hole diameter is fixed to 10,000 and the flow rate of crossflow is changed from 0.5 to 1.5 times of that of the impinging jet. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. Also to analyze the flow characteristics, a numerical calculation is performed. When rectangular fins are installed, the flow and heat transfer pattern is changed greatly from case without fins. In the injection hole region, the jet impinges on effusion plate without deflection and wall jet spreads symmetrically. In the effusion region, the crossflow accelerates due to the decrease of cross-sectional area in the channel. Local heat/mass transfer coefficients are enhanced significantly compared to case without fins. As the blowing ratio increases, the effect of fins against the crossflow becomes more significant and then the higher average heat/mass transfer coefficients are obtained than the case without fins.

  • PDF

여성의 긴장성 요실금에 관한 연구 (A Study on Stress Incontinence in Women in Korea)

  • 이영숙
    • 모자간호학회지
    • /
    • 제4권1호
    • /
    • pp.12-23
    • /
    • 1994
  • This study was done to determine the situations of stress incontinence(SI) and the differences in general characteristics, obstetrical history and SI related variables between women with stress incontinence and normal women. The design for study was a descriptive study. The number of subjects consisted of 156 women who were selected by systematic random sampling in Kwangju city. Data collection was done with the modified Hendrickson's Stress Incontinence Scale(1981) which was analyzed using frequency and percentiles. The results were as follows : 1. The stress incontinence (SI) rate of the sample was 64.1% and the majority of the women(40.9%) had experienced SI for a period of five years(the mean period was 2.7 years) without any treatment or care(83.0%). The amount of SI was from one drop(40.0%) to one teaspoon(16.7%) daily. 2. Items on the SI scale had the scores ranging from 4 to 44 with a mean score of 13.7 which showed mild SI. 3. The priority of provocative factors for SI were abdominal tightening(83%), coughing(58%), laughing(52%), sneezing(40%), steeping(18%), sudden standing(17%), nose blowing(13%), heavy exercise(11%), rapid walking up-stairs(10%) and excitment (9%) in that order. 4. There were no significant differences in age, education, spouse, job and income between the women with SI and the normal women. 5. There were no significant differences in the age at the last delivery, age of last baby. number of vaginal, or cesarean deliveries, or abdominal operations between the women with SI and the normal women. It can be concluded that SI in women has a high incidence nth various provocative factors but it is relatively mild SI on a daily basis and generally there has been no treatment. It is suggested that a descriptive study of emotional problems and precipitating variables in SI women will increase the knowledge of SI.

  • PDF

Positive Pressure Ventilator 경사각 변화에 의한 화염억제 효율과 연기농도 변화 (Effect of Positive Pressure Ventilator Tilting Angle on the Flame Suppression and Smoke Density)

  • 김성원;이경덕;신창섭
    • 한국화재소방학회논문지
    • /
    • 제20권4호
    • /
    • pp.135-142
    • /
    • 2006
  • 화재시 구조물 내부의 열 및 연기를 급속하게 배기시키기 위하여 Positive Pressure Ventilation 방식을 적용하였으며, 이의 적용에 따른 열 배출과 연기농도의 변화를 측정하였고, 송풍기의 경사각 등 송풍조건의 변화에 따른 영향을 측정하였다. 또한 화염억제 효율증대를 위하여 PPV에 미세물분무 시스템을 결합하여 열 배출과 구조물 내부 연기제거 효과를 측정하였다. PPV 방식의 적용에 따라 화염주위의 온도가 급격히 낮아졌으며, 경사각의 영향이 큰 것으로 나타났다. 화재시 발생되는 연기의 농도도 PPV의 적용에 의해 크게 감소시킬 수 있었으며, 본 실험에서는 경사각 $0^{\circ}$에서 가장 높은 효율을 나타내었다. 한편, PPV와 함께 미세물분무를 적용한 경우 열 및 연기농도의 저감효과가 더욱 크게 나타났으며, 이 경우에도 경사각의 영향이 크게 나타났다.

도수 소생기와 풍선을 이용한 공기 누적이 폐 기능에 미치는 즉각적인 효과 비교 (A Comparison of Acute Effect of Air Stacking Using Resuscitator Bag versus Balloon on Pulmonary Functions)

  • 류지윤;이동엽;홍지헌;김진섭;김성길
    • 대한통합의학회지
    • /
    • 제9권1호
    • /
    • pp.23-31
    • /
    • 2021
  • Purpose : To compare the immediate effects of air stacking maneuver using resuscitator bags and balloons. Methods : Twenty healthy young adults participated in this study. Forced vital capacity (FVC) and peak cough flow (PCF) tests were performed at pre-intervention, and then, the maximum insufflation capacity (MIC), forced expiratory volume in 1 s (FEV1), FEV1/FVC, peak expiratory flow (PEF), and peak cough flow (PCF) were measured using the air stacking maneuver via resuscitator bags and balloons. Interventions were randomly performed, and a 40-min break was provided between interventions. The evaluation process in this study was conducted in accordance with the guidelines of the American Thoracic Society (ATS) 2019. To compare the three outcomes measured at pre-and post-interventions, repeated measures analysis of variance was performed. Results : A significant difference was found in the MIC, FEV1, PEF, and PCF after the air stacking maneuver using resuscitator bags and balloons, whereas no significant difference was observed between resuscitator bags and balloons. Conclusion : No significant difference was found in the immediate effect of the air stacking maneuver using resuscitator bags and balloons in this study. Air stacking maneuver using balloons can increase the success rate of the techniques by providing visual feedback on the amount of air insufflation when performed with balloon blowing exercise. Balloons are cheaper and easier to buy compared to manual resuscitator bags; therefore, education on the air stacking maneuver using balloons will have a positive effect on pulmonary rehabilitation.

옥내저탄장 기류 흐름 및 환기량 분석을 통한 내부 유동 평가 (Evaluation of Internal through Analysis of Airflow and Ventilation of Coal Storage Shed)

  • 조현정;이진홍
    • 환경영향평가
    • /
    • 제31권5호
    • /
    • pp.334-342
    • /
    • 2022
  • 대기환경보전법이 강화되면서 야외저탄장을 옥내화 함으로써 외부로 날리는 비산먼지는 감소했지만, 저탄장에서 발생하는 석탄 비산먼지와 유해물질들을 단순히 격리함으로서 이러한 물질들이 내부에 축적되어 또 다른 문제를 야기할 수 있다. 본 연구는 이를 해결하기 위해 운영 중인 옥내 저탄장을 선정하여 내부 기류 흐름 양상과 환기량을 분석하였다. 옥내저탄장 내부 기류는 전반적으로 지형적으로 산 쪽에 접한 남서쪽으로 이동하는 경향을 보였다. 그리고 바다와 접한 북쪽 루버에서는 해풍에 의한 기류가 유입되고 있었다. 옥내저탄장 내부로 유입되는 총 유량은 918,691m3/h, 시간당 자연환기 횟수는 0.6회로 나타났다. 연구 결과를 바탕으로 내부 기류가 집중되는 위치에 강제 환기장치를 설치하는 것을 제안한다.

전동화된 스피드 스프레이어의 블레이드 형상에 따른 송풍구 유동 특성 분석 (Analysis of the Flow Characteristics for the Blower According to the Blade Shape of the Electrified Speed Sprayer)

  • 오승훈;심재록;서현규
    • 한국분무공학회지
    • /
    • 제28권1호
    • /
    • pp.16-23
    • /
    • 2023
  • The objective of this numerical study is to investigate the effect of the shape and material of the blower blade for the electrified speed sprayer on the blowing performance. The shape of the blade was changed to the bonding angle, the number of blades, the width of the blade, and the blade length based on the existing model. In order to obtain the reliability of the numerical model, the analysis of the grid dependence was performed in the numerical analysis. The numerical analysis results were compared and analyzed in terms of the agricultural chemical penetration length characteristics, flow uniformity characteristics, and velocity distribution characteristics. Furthermore, the effect of material change on weight reduction and structural characteristics was also compared and analyzed. As a result of the analysis, it was found that the optimal condition was that the blade angle was 45°, the number of blades was 12, and the width was 115 mm, which was confirmed through a comparison of the inlet mass flow rate. As a result of the equivalent stress lower than the yield strength due to the material change from aluminum to steel compared to the existing steel, structural defects do not appear, and it is judged that the operation time compared to the battery capacity will be improved through the weight reduction of the blade.

단열 발포 폴리올레핀계 구조체의 특성에 관한 연구 (A Study on the Characteristics of the Adiabatically Expanded Polyolefin Structured Foams)

  • 황준호;김우년;전재호;곽순종;황승상;흥순만
    • 폴리머
    • /
    • 제29권6호
    • /
    • pp.605-612
    • /
    • 2005
  • 폴리올레핀계 공중합체 수지인 polypropylene-polyethylene-(1-butene) 미발포 수지에 부탄 가스를 물리적 발포제로 이용하여 단열 팽창시킨 발포체의 등온 결정화 거동을 DSC(differential scanning calorimeter)와 편광 현미경을 이용하여 고찰하였으며, 얻어진 결과는 Avrami 식을 이용하여 해석하였다. 발포체의 결정화 반감 시간이 미발포체의 결정화 반감 시간보다 짧고 핵 생성 속도 증가에 따른 nucleation density증가 및 구정 성장 속도가 더 빠름이 발견되었는데, 이는 가공 공정 중의 분자량 감소보다는 단열 팽창 과정에서 진행되는 연신 배향 결정화에 의해 결정화 속도가 증가하였기 때문인 것으로 사료된다. 또한, 단열 구조 발포체는 직경 30 $\mu$m 이하의 균일한 closed cell 형태를 나타내고 있음을 SEM 을 이용하여 관찰하였고, 발포체의 물성은 미발포체에 비해 단열성이 크기 때문에 열전도도가 감소하였고 압축강도는 발포비가 증가할수록 감소하는 것을 알 수 있었다.

Dynamic modeling of LD converter processes

  • Yun, Sang Yeop;Jung, Ho Chul;Lee, In-Beum;Chang, Kun Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1639-1645
    • /
    • 1991
  • Because of the important role LD converters play in the production of high quality steel, various dynamic models have been attempted in the past by many researchers not only to understand the complex chemical reactions that take place in the converter process but also to assist the converter operation itself using computers. And yet no single dynamic model was found to be completely satisfactory because of the complexity involved with the process. The process indeed involves dynamic energy and mass balances at high temperatures accompanied by complex chemical reactions and transport phenomena in the molten state. In the present study, a mathematical model describing the dynamic behavior of LD converter process has been developed. The dynamic model describes the time behavior of the temperature and the concentrations of chemical species in the hot metal bath and slag. The analysis was greatly facilitated by dividing the entire process into three zones according to the physical boundaries and reaction mechanisms. These three zones were hot metal (zone 1), slag (zone 2) and emulsion (zone 3) zones. The removal rate of Si, C, Mn and P and the rate of Fe oxidation in the hot metal bath, and the change of composition in the slag were obtained as functions of time, operating conditions and kinetic parameters. The temperature behavior in the metal bath and the slag was also obtained by considering the heat transfer between the mixing and the slag zones and the heat generated from chemical reactions involving oxygen blowing. To identify the unknown parameters in the equations and simulate the dynamic model, Hooke and Jeeves parttern search and Runge-Kutta integration algorithm were used. By testing and fitting the model with the data obtained from the operation of POSCO #2 steelmaking plant, the dynamic model was able to predict the characteristics of the main components in the LD converter. It was possible to predict the optimum CO gas recovery by computer simulation

  • PDF