• Title/Summary/Keyword: Blog Clustering

Search Result 17, Processing Time 0.027 seconds

A Study on Extracting Customer Emotions from Blog and Clustering for Target Marketing (고객 Clustering을 위한 Blog 감성 추출에 대한 연구)

  • Bae, Sang-Keun;Kang, Jae-Woo
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.403-406
    • /
    • 2008
  • Blog는 개인의 여러 미묘한 감정과 감성들을 표현하고, 이를 소통하는 Communication Channel 역할을 하고 있으며, 또한 누구나 접근할 수 있게 되었다. 이는 각 기업에게, 기존의 비효율적인 Mass Marketing 방법에서 벗어나, 소비자의 감성을 자연스럽게 추출하여 세련된 Target Marketing을 할 수 있는 훌륭한 기회를 제공하게 된다. 하지만, 고객의 Blog로 부터 미묘한 감성지수를 추출하고, 이를 마케팅 방법에 접목시키는 것은 쉽지 않은 일이다. 이러한 문제를 해결하기 위해서 본 논문에서는 고객 회원정보에 등록된 Blog를 이용하여, Target Marketing에 활용할 수 있는, 고객 Clustering을 위한 Blog 감성 추출에 대한 연구를 수행하였다. Blog의 Main Skin Image를 통해 지배적인 채도와 명도를 추출하여 수치화하고, 이를 바탕으로 고객 Blog를 테이스트 스케일법 (*일본감성연구소 개발방법)의 실증된 감성 Group 별로 Clustering 하였다. Clustering 된 각 Blog 사용자를 대상으로 연관 배색에 대한 감성 설문조사를 실시한 결과, 유의한 실험결과가 도출되어 향후 고객 감성을 기반으로 한 Target Marketing에 활용할 수 있는 가능성을 볼 수 있었다.

Study for Blog Clustering Method Based on Similarity of Titles (주제 유사성 기반 클러스터링을 이용한 블로그 검색기법 연구)

  • Lee, Ki-Jun;Lee, Myung-Jin;Kim, Woo-Ju
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.2
    • /
    • pp.61-74
    • /
    • 2009
  • With an exponential growth of blogs, lots of important data have appeared on blogs. However, since main topics mentioned in blog pages are quite different from general web pages, there are problems which can't be solved by general search engines. Therefore, many researchers have studied searching methods only for blogs to help users who want to have useful information on blog. We also present a blog classifying method based on similarity of titles. First, we analyze blogs and blog search engines to find problems and solution of current blog search. Second, applying our similarity algorithm on blog titles, we discuss a way to develop clustering method only for blog. Finally, by making a prototype system of our algorithm, we evaluate our algorithm's effectiveness and show conclusion and future work. We expect this algorithm could add its power to current search engine.

  • PDF

A Study of Similar Blog Recommendation System Using Termite Colony Algorithm (흰개미 군집 알고리즘을 이용한 유사 블로그 추천 시스템에 관한 연구)

  • Jeong, Gi Sung;Jo, I-Seok;Lee, Malrey
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.83-88
    • /
    • 2013
  • This paper proposes a recommending system of the similar blogs gathered with similarities between blogs according to the similarity, dividing words, for each frequency, that individual blogs have. It improved the algorithm of k-means, using the model of the habits of white ants for better performance of clustering, and showed better performance of clustering as a result of evaluating and comparing with the existing algorithm of k-means as the improved algorithm. The recommending system of similar blog was designed and embodied, using the improved algorithm. TCA can reduce clustering time and the number of moving time for clustering compare with K-means algorithm.

Post Clustering Method using Tag Hierarchy for Blog Search (블로그 검색에서의 태그 계층구조를 이용한 포스트 군집화)

  • Lee, Ki-Jun;Kim, Kyung-Min;Lee, Myung-Jin;Kim, Woo-Ju;Hong, June-S.
    • The Journal of Society for e-Business Studies
    • /
    • v.16 no.4
    • /
    • pp.301-319
    • /
    • 2011
  • Blog plays an important role as new type of knowledge base distinguishing from traditional web resource. While information resources in their existing website dealt with a wide range of topics, information resources of the blog are concentrated in specific units of information depending on the user's interests and have the criteria of classification forresources published by tagging. In this research, we build a tag hierarchy utilizing title keywords and tags of the blog, and propose apost clustering methodology applying the tag hierarchy. We then generate the tag hierarchy reflected the relationship between tags and develop the tag clustering methodology according to tag similarity. In this paper, we analyze the possibility of applying the proposed methodology with real-world examples and evaluate its performances through developed prototype system.

TRIB : A Clustering and Visualization System for Responding Comments on Blogs (TRIB: 블로그 댓글 분류 및 시각화 시스템)

  • Lee, Yun-Jung;Ji, Jung-Hoon;Woo, Gyun;Cho, Hwan-Gue
    • The KIPS Transactions:PartD
    • /
    • v.16D no.5
    • /
    • pp.817-824
    • /
    • 2009
  • In recent years, Weblog has become the most typical social media for citizens to share their opinions. And, many Weblogs reflect several social issues. There are many internet users who actively express their opinions for internet news or Weblog articles through the replying comments on online community. Hence, we can easily find internet blogs including more than 10 thousand replying comments. It is hard to search and explore useful messages on weblogs since most of weblog systems show articles and their comments to the form of sequential list. In this paper, we propose a visualizing and clustering system called TRIB (Telescope for Responding comments for Internet Blog) for a large set of responding comments for a Weblog article. TRIB clusters and visualizes the replying comments considering their contents using pre-defined user dictionary. Also, TRIB provides various personalized views considering the interests of users. To show the usefulness of TRIB, we conducted some experiments, concerning the clustering and visualizing capabilities of TRIB, with articles that have more than 1,000 comments.

Analysis and Visualization for Comment Messages of Internet Posts (인터넷 게시물의 댓글 분석 및 시각화)

  • Lee, Yun-Jung;Ji, Jeong-Hoon;Woo, Gyun;Cho, Hwan-Gue
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.45-56
    • /
    • 2009
  • There are many internet users who collect the public opinions and express their opinions for internet news or blog articles through the replying comment on online community. But, it is hard to search and explore useful messages on web blogs since most of web blog systems show articles and their comments to the form of sequential list. Also, spam and malicious comments have become social problems as the internet users increase. In this paper, we propose a clustering and visualizing system for responding comments on large-scale weblogs, namely 'Daum AGORA,' using similarity analysis. Our system shows the comment clustering result as a simple screen view. Our system also detects spam comments using Needleman-Wunsch algorithm that is a well-known algorithm in bioinformatics.

TRIB: A Clustering and Visualization System for Responding comments on WebBlog (TRIB: 웹블로그 댓글분류 시각화 시스템)

  • Bae, Min-Jung;Lee, Yun-Jung;Ji, Jeong-Hoon;Woo, Gyun;Cho, Hwan-Gyu
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.226-229
    • /
    • 2009
  • 최근 들어 인터넷 게시판이나 개인 블로그 등은 온라인상에서 사람들의 정보 공유나 의견 교환의 중요한 매체가 되고 있다. 많은 수의 블로그들은 현재 사회적으로 이슈가 되는 여러 문제들을 반영하고 있다. 또한 최근 댓글을 통해 적극적으로 자신의 의사 표현하거나 다른 사람들의 의견을 살피는 인터넷 사용자의 증가로 인터넷 뉴스나 블로그 기사에 많은 수의 댓글이 달리고 있다. 그러나 대부분의 블로그나 인터넷 포털 사이트의 경우 기사나 댓글들을 순차적인 목록 형태로 제공하므로 자신이 원하는 내용의 댓글을 검색하거나 전체 댓글에 대한 전반적인 파악은 힘든 일이다. 따라서 본 논문에서는 기사에 달린 많은 수의 댓글들을 분류하고, 이를 시각화 하는 시스템인 TRIB(Telescope for Responding comments for Internet Blog)을 제안한다. TRIB은 미리 정의된 사용자 정의 사전을 이용하여 댓글을 내용에 따라 분류하여 시각화 하므로 사용자들은 자신의 관심과 흥미에 따라 개인화 된 뷰를 볼 수 있다. 1,000개 이상의 댓글을 가진 뉴스 기사들을 대상으로 한 실험을 통해 TRIB 시스템의 댓글 분류와 시각화 성능을 보인다.

Clustering System of Restaurant Review in Blog based on Word Similarity (단어 유사도를 기반으로 한 맛집 블로그 포스트 클러스터링 시스템)

  • Jo, Kyungeun;Woo, Gyun
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.993-996
    • /
    • 2015
  • 인터넷 블로그를 이용한 맛집 마케팅은 외식 산업에서 상당한 영향력을 발휘하고 있다. 사람들은 블로그를 이용해 많은 맛집 리뷰를 작성 및 검색하고 있다. 그런데 사람들이 맛집 리뷰를 검색하면, 검색 엔진에서는 검색어에 대한 정확도 및 시간순으로 검색 결과를 정렬해 주기 때문에 같은 식당에 대한 포스트들이 분산되어 검색된다. 따라서 사람들은 수많은 맛집 리뷰가 섞여있는 검색 결과를 보고 그중 한 식당을 선택하는 것에 어려움을 느낄 수 있다. 이때, 같은 식당에 대한 리뷰를 모아서 보여준다면 어떤 식당에 대한 리뷰가 존재하는지 일목요연하게 볼 수 있으며, 한 식당에 대한 다양한 의견을 참고하여 가고자 하는 식당을 선택하는데 도움이 된다. 따라서 본 논문에서는 블로그의 맛집 포스트를 클러스터링 하는 시스템을 제안하였다. 시스템을 통해 생성된 클러스터의 평가 결과, 정확률, 난수 색인, 순수도는 90% 이상의 높은 값을 보였다.

Design and Implementation of Topic Map Generation System based Tag (태그 기반 토픽맵 생성 시스템의 설계 및 구현)

  • Lee, Si-Hwa;Lee, Man-Hyoung;Hwang, Dae-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.730-739
    • /
    • 2010
  • One of core technology in Web 2.0 is tagging, which is applied to multimedia data such as web document of blog, image and video etc widely. But unlike expectation that the tags will be reused in information retrieval and then maximize the retrieval efficiency, unacceptable retrieval results appear owing to toot limitation of tag. In this paper, in the base of preceding research about image retrieval through tag clustering, we design and implement a topic map generation system which is a semantic knowledge system. Finally, tag information in cluster were generated automatically with topics of topic map. The generated topics of topic map are endowed with mean relationship by use of WordNet. Also the topics are endowed with occurrence information suitable for topic pair, and then a topic map with semantic knowledge system can be generated. As the result, the topic map preposed in this paper can be used in not only user's information retrieval demand with semantic navigation but alse convenient and abundant information service.

Automatic Construction of Reduced Dimensional Cluster-based Keyword Association Networks using LSI (LSI를 이용한 차원 축소 클러스터 기반 키워드 연관망 자동 구축 기법)

  • Yoo, Han-mook;Kim, Han-joon;Chang, Jae-young
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1236-1243
    • /
    • 2017
  • In this paper, we propose a novel way of producing keyword networks, named LSI-based ClusterTextRank, which extracts significant key words from a set of clusters with a mutual information metric, and constructs an association network using latent semantic indexing (LSI). The proposed method reduces the dimension of documents through LSI, decomposes documents into multiple clusters through k-means clustering, and expresses the words within each cluster as a maximal spanning tree graph. The significant key words are identified by evaluating their mutual information within clusters. Then, the method calculates the similarities between the extracted key words using the term-concept matrix, and the results are represented as a keyword association network. To evaluate the performance of the proposed method, we used travel-related blog data and showed that the proposed method outperforms the existing TextRank algorithm by about 14% in terms of accuracy.