• 제목/요약/키워드: Block Impact

검색결과 284건 처리시간 0.034초

블록하중을 받는 충격손상 적층복합재료의 피로수명 예측 (Fatigue Life Predication of Impacted Laminates Under Block Loading)

  • 김정규;강기원;유승원
    • 대한기계학회논문집A
    • /
    • 제25권7호
    • /
    • pp.1089-1096
    • /
    • 2001
  • This paper presents the fatigue behavior of composite materials with impact-induced damage under 2 level block loading. For this purpose, the 2 level block loading fatigue tests were performed on the impacted composite laminate. The fatigue life of the laminate under the block loading is greatly influenced by the impact damage; the effect of impact damage can be characterized by the present impact damage parameter. Based on this parameter, the model is developed to predict the fatigue life under block loading and the results by this model agree well with experimental results regardless of applied impact energy. Also, stochastic model is established to describe the variation of cumulative damage behavior and fatigue life due to the material nonhomogeneity.

지표 건물이 도시유역의 침수특성에 미치는 영향 (Impact of Building Blocks on Inundation Level in Urban Drainage Area)

  • 이정영;하성룡
    • 환경영향평가
    • /
    • 제22권1호
    • /
    • pp.99-107
    • /
    • 2013
  • This study is an impact assessment of building blocks on urban inundation depth and area. LiDAR data is used to generate two original data set in terms of DEM with $5{\times}5$ meter and building block elevation layer of the study drainage area in Cheongju and then the building block elevation layer is modified again to the mesh data with same size to DEM. Two-dimensional inundation analysis is carried out by applying 2D SWMM model. The inundation depth calculated by using the building block elevation layer shows higher reliability than the DEM. This is resulted from the building block interference to surface flow. In addition, the maximum flooded area by DEM is two times wider than the area by building block layer. In the case of the surface velocity, the difference of velocity is negligible in either DEM or building block case in the low building impact zone. However, If the impact of building on the surface velocity was increase, the gap of velocity was significant.

강체 블록의 비선형 로킹진동특성에 관한 연구 (미끄럼이 있는 경우) (A Study on Nonlinear Rocking Vibration Characteristics of Rigid Block (In the Case of Sliding Occurrence))

  • 정만용;김정호;김선규;나기대;양인영
    • 한국안전학회지
    • /
    • 제15권1호
    • /
    • pp.1-10
    • /
    • 2000
  • This paper deals with rocking response behavior of rigid block structure subjected to horizontal excitation. A strict consideration of impact and sliding between the block and base is essential to investigate the rocking vibration characteristics because the rocking behavior were greatly influenced by the impact and sliding motion. Therefore, not only restitution coefficient between the block and base but also the energy dissipation rate which is associated with sliding motion, and the static and kinetic friction coefficient between those should be included in the modeling of rocking system. The analytic program was developed to be able to simulate the experimental responses of the block subjected to horizontal sinusoidal excitations. By using this program, rocking responses were numerically calculated by the nonlinear equations for rocking system. From the response simulation and rocking vibration experiment, the following results were obtained. The rocking responses are affected by the impact motion due to energy dissipation and friction and provide very complex behavior. The toppling condition of the block is also influenced by the impact motion and sliding motion.

  • PDF

권상 작업 중 슬링 파손으로 인한 블록 지상 낙하 충격에 대한 준정적 해석 (Quasi-Static Analysis of Block Impact Against the Ground Due to Sling Failure During Block Lifting)

  • 김선엽;이탁기;윤정호
    • 대한조선학회논문집
    • /
    • 제58권2호
    • /
    • pp.84-89
    • /
    • 2021
  • Recently, shipyards are making many efforts to reduce the number of the mounted blocks by increasing the block size. This is to improve productivity and reduce related costs by minimizing block movement and shortening the building period. However, as the blocks become larger, the weight increases considerably. If the target block has a damage due to an unexpected accident during block lifting, it may seriously cause a problem of the reusability of the block. In this study, a large-sized block of the offshore structure weighing 480 tons was lifting with a total of seven sling belts, and one sling belt was broken while it was moving, resulting in a situation in which a part of the edge of the block collided with the ground. The aim of this paper is to verify the structural integrity of the block that directly collides with the ground in the form of free fall due to the sling breakage. Considering that the hook loads acting on several sling belts holding the block are redistributed when a sling belt is broken, the hook loads were recalculated at the angle just before the sling breakage. These loads were used to check the safety of the sling belts. In addition, FE analysis was performed by calculating the amount of impact from the free fall condition, obtaining the impact area by using Hertz's contact theory, and then applying the impact load to the area.

Concrete Stress Block Parameters for High-Strength Concrete : Recent Developments and Their Impact

  • Bae, Sun-Gjin
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권1E호
    • /
    • pp.11-16
    • /
    • 2006
  • The use of the current ACI 318 stress block parameters has been reported to provide unconservative estimations of the moment capacities for high-strength concrete columns. Accordingly, several concrete stress block parameters have been recently proposed. This paper discusses various concrete stress block parameters for high-strength concrete and their influences on the code provisions. In order to adopt the proposed stress block parameters to the design code, it is necessary to understand the impact of the change of the stress block parameters on various aspects of the code provisions. For this purpose, the influence of using of different stress block parameters on the location of the neutral axis and the tensile strain in extreme tension steel as well as the axial and moment capacities are investigated. In addition, the influence on the prestressed concrete members is also elucididated.

The morphology and mechanical properties of the blends of syndiotactic polystyrene and polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene copolymers

  • O, Hyun-Tack;Kim, Hwang-Ryong;Kim, Jin-Kon;Park, Joon-Young
    • Korea-Australia Rheology Journal
    • /
    • 제13권2호
    • /
    • pp.83-87
    • /
    • 2001
  • The morphology and mechanical properties of the blends of a syndiotactic polystyrene (SPS) and poly-styrene-block-poly(ethylene-co-butylene)-block-polystyrene copolymers (SEBS) with various polystyrene block contents are studied. Mechanical properties, especially elongation at break and impact strength (IS), of the blend depend upon the morphology and interfacial adhesion, which in rum are affected by the viscosity ratio of constituent components and the styrene block content in SEBS. The IS of a blend was affected by the combined effect of rubber content and the interfacial adhesion. A maximum IS was found for a blend with the weight fraction of the PS block in an SEBS of 0.18. The IS of blends with smaller weight fractions of the PS block exhibited lower due to poor interfacial adhesion between SPS/SEBS in spite of a larger amount of rubber block. On the other hand, the IS of blends with larger weight fraction of the PS block becomes smaller due to lower amounts of rubber block in spite of better interfacial adhesion.

  • PDF

차체 구조용 에폭시 접착제의 접합강도에 미치는 나노 기능성 블록공중합체 첨가의 영향 (The Effect of Nano Functionalized Block Copolymer Addition on the Joint Strength of Structural Epoxy Adhesive for Car Body Assembly)

  • 이혜림;이소정;임창용;서종덕;김목순;김준기
    • Journal of Welding and Joining
    • /
    • 제33권4호
    • /
    • pp.44-49
    • /
    • 2015
  • The structural epoxy adhesive used in car body assembly needs the highest level of joint mechanical strength under lap shear, T-peel and impact peel conditions. In this study, the effect of nano functionalized block copolymer addition on the impact peel strength of epoxy adhesive was investigated. DSC analysis showed that the addition of nano functionalized block copolymer did not affect the curing reaction of epoxy adhesive. From single lap shear test, it was found out that the addition of nano functionalized block copolymer slightly decreased the cohesive strength of cured adhesive layer. The addition of nano functionalized block copolymer showed beneficial effect on T-peel strength by changing the adhesive failure mode to the mixed mode. However, the addition of nano functionalized block copolymer just decreased the room temperature impact peel strength. It was considered that the addition of nano functionalized block copolymer could have effect on disturbing the crack propagation only for the case of slow strain rate.

피스톤 슬랩에 의해 발생되는 엔진 블록의 표면 진동 속도 예측 모델 (A Prediction Model of Piston Slap Induced Vibration Velocity of Engine Block Surface)

  • 안상태;조성호;김양한;이동수
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.587-592
    • /
    • 1999
  • Piston slap is one of the sources producing engine block surface vibration and mechanical noise. To analyze piston slap-induced vibration, a realistic but simple model is proposed and verified experimentally. A piston is modeled by 3 degree of freedom system and an impact point between piston skirt and cylinder wall by 2 degree of freedom system. Numerical simulation estimates impact forces of piston in cylinder, and the engine block surface vibration response is predicted by the convoluton of the impact forces with measured impulse responses. Experimental verification on the predicted response has been also performed by using a commercial 4-cylinder diesel engine. the predicted and experimental vibration responses confirm that the suggested model is practically useful.

  • PDF

ALC 블록 벽체에 시공한 석재 아트월의 내충격성 평가 (Evaluation of Impact Resistance of Interior Stone Walls Constructed on the ALC Block Wall)

  • 고봉천;이덕주;김현;최수경
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.10-11
    • /
    • 2019
  • Interior stone walls are using commonly in non-bearing lightweight walls of apartments. The stones of interior wall were two types, one is a granite stone, another is a marble stone. Granite stone is attached by the epoxy adhesive and marble stone is attached by dedicated anchor and fastener. The impact resistance test was carried out interior stone walls in accordance with KS F 2613. The test methods included the impact resistance tests by each of soft impact body and hard impact body. The results of the test have proved that interior stone walls can withstand the soft impact bodies and hard impact bodies that are likely to happen in everyday life.

  • PDF

A Feasibility Study of Wood-plastic Composite Paver Block for Basic Rest Areas

  • Yang, Sungchul
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권1호
    • /
    • pp.51-65
    • /
    • 2019
  • A wood-plastic composite (WPC) paver block was manufactured using wood chips waste through an extrusion process, and it was intended to be used for paving in basic rest areas. The first stage in this study covered preliminary tests in terms of flexural strength and dimensional swelling to determine the optimal WPC compounding mix condition, by variation of the WPC ingredients. Next, three different paver blocks including the WPC block, a non-porous cement block, and a porous cement block were tested in terms of various material properties in the laboratory. Finally, two outdoor test sections of the proposed paver blocks were prepared to simulate a basic rest area. Test results indicated that the flexural strength of the WPC paver blocks was about 1.6 times greater than that of the tested cement paver blocks. The WPC block pavement was unaffected by water buoyance as well as volume expansion due to swelling. Results from the impact absorbance test and light falling weight deflectometer (LFWD) test clearly showed that the WPC block paving system marginally satisfied the comfortable and safe hardness range from the pedestrians' perspective, while the results demonstrated that it is structurally sound for application as a road paving block.