• Title/Summary/Keyword: Blind Multichannel Deconvolution

Search Result 7, Processing Time 0.019 seconds

A Frequency-Domain Normalized MBD Algorithm with Unidirectional Filters for Blind Speech Separation

  • Kim Hye-Jin;Nam Seung-Hyon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2E
    • /
    • pp.54-60
    • /
    • 2005
  • A new multichannel blind deconvolution algorithm is proposed for speech mixtures. It employs unidirectional filters and normalization of gradient terms in the frequency domain. The proposed algorithm is shown to be approximately nonholonomic. Thus it provides improved convergence and separation performances without whitening effect for nonstationary sources such as speech and audio signals. Simulations using real world recordings confirm superior performances over existing algorithms and its usefulness for real applications.

A New Formulation of Multichannel Blind Deconvolution: Its Properties and Modifications for Speech Separation

  • Nam, Seung-Hyon;Jee, In-Nho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.4E
    • /
    • pp.148-153
    • /
    • 2006
  • A new normalized MBD algorithm is presented for nonstationary convolutive mixtures and its properties/modifications are discussed in details. The proposed algorithm normalizes the signal spectrum in the frequency domain to provide faster stable convergence and improved separation without whitening effect. Modifications such as nonholonomic constraints and off-diagonal learning to the proposed algorithm are also discussed. Simulation results using a real-world recording confirm superior performanceof the proposed algorithm and its usefulness in real world applications.

Multichannel Blind Deconvolution of Multistage Structure to Eliminate Interference and Reverberation Signals (간섭 및 반향신호 제거를 위한 다단계 구조의 다채널 암묵 디콘볼루션)

  • Lim, Joung-Woo;Jeong, Gyu-Hyeok;Joo, Gi-Ho;Kim, Young-Ju;Lee, In-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.85-93
    • /
    • 2007
  • In case that multichannel blind deconvolution (MBD) applies to signals of which autocorrelation has a high level, separated signals are temporally whitened by diagonal elements of a separation filter matrix. In order to reduce this distortion, the algorithms, which are based on either constraining diagonal elements of a separation filter matrix or estimating a separation filter matrix by using linear prediction residual signals, are presented. Still, some problems are generated in these methods, when we separate reverberation of signals themselves or interference signals from mixed signals. To solve these problems, this paper proposes the multichannel blind deconvolution method which divides processing procedure into the stage to separate interference signals and the stage to eliminate a reverberation of signals themselves. In simulation results, we confirm that the proposed algorithm can solve the problems.

Adaptive Spatio-temporal Decorrelation : Application to Multichannel Blind Deconvolution

  • Hong, Heon-Seok;Choi, Seung-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.753-756
    • /
    • 2000
  • In this paper we present and compare two different spatio-temporal decorrelation learning algorithms for updating the weights of a linear feedforward network with FIR synapses (MIMO FIR filter). Both standard gradient and the natural gradient are employed to derive the spatio-temporal decorrelation algorithms. These two algorithms are applied to multichannel blind deconvolution task and their performance is compared. The rigorous derivation of algorithms and computer simulation results are presented.

  • PDF

Regularized Multichannel Blind Deconvolution Using Alternating Minimization

  • James, Soniya;Maik, Vivek;Karibassappa, K.;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.6
    • /
    • pp.413-421
    • /
    • 2015
  • Regularized Blind Deconvolution is a problem applicable in degraded images in order to bring the original image out of blur. Multichannel blind Deconvolution considered as an optimization problem. Each step in the optimization is considered as variable splitting problem using an algorithm called Alternating Minimization Algorithm. Each Step in the Variable splitting undergoes Augmented Lagrangian method (ALM) / Bregman Iterative method. Regularization is used where an ill posed problem converted into a well posed problem. Two well known regularizers are Tikhonov class and Total Variation (TV) / L2 model. TV can be isotropic and anisotropic, where isotropic for L2 norm and anisotropic for L1 norm. Based on many probabilistic model and Fourier Transforms Image deblurring can be solved. Here in this paper to improve the performance, we have used an adaptive regularization filtering and isotropic TV model Lp norm. Image deblurring is applicable in the areas such as medical image sensing, astrophotography, traffic signal monitoring, remote sensors, case investigation and even images that are taken using a digital camera / mobile cameras.

Identification of fault signal for rotating machinery diagnosis using Blind Source Separation (BSS) (BSS를 이용한 회전 기계 진단 신호 분석)

  • Seo, Jong-Soo;Lee, Jeong-Hak;J. K. Hammond
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.839-845
    • /
    • 2003
  • This paper introduces multichannel blind source separation (BSS) and multichannel blind deconvolution (MBD) based on higher order statistics of signals from convolutive mixtures. In particular, we are concerned with the case that the number of inputs is the same as the number of outputs. Simulations for two input two output cases are carried out and their performances are assessed. One of the major applications of those sequential algorithms (BSS and MBD) is demonstrated through the fault signal detection from only a single measurement of rotating machine, which offers a certain degree of practicability in the engineering field such as machine health monitoring or condition monitoring.

  • PDF

Speech Enhancement Using Blind Signal Separation Combined With Null Beamforming

  • Nam Seung-Hyon;Jr. Rodrigo C. Munoz
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.4E
    • /
    • pp.142-147
    • /
    • 2006
  • Blind signal separation is known as a powerful tool for enhancing noisy speech in many real world environments. In this paper, it is demonstrated that the performance of blind signal separation can be further improved by combining with a null beamformer (NBF). Cascading the blind source separation with null beamforming is equivalent to the decomposition of the received signals into the direct parts and reverberant parts. Investigation of beam patterns of the null beamformer and blind signal separation reveals that directional null of NBF reduces mainly direct parts of the unwanted signals whereas blind signal separation reduces reverberant parts. Further, it is shown that the decomposition of received signals can be exploited to solve the local stability problem. Therefore, faster and improved separation can be obtained by removing the direct parts first by null beamforming. Simulation results using real office recordings confirm the expectation.