• 제목/요약/키워드: Blending Surface

검색결과 170건 처리시간 0.024초

접촉 곡선을 이용한 BLENDING 곡면 (Blending Surface Using Rail Curves)

  • 이희관;양균의
    • 한국정밀공학회지
    • /
    • 제12권8호
    • /
    • pp.114-121
    • /
    • 1995
  • This paper describes a method which uses rail curves for blending surfaces. Blending surface between the free form surfaces which have the flexible shapes and are widely used today is investigated. The rail curves give blending surface continuty through Pointwise interpola- tion. It is the point in this paper that the blending surfaces give a good flexibility to modeling of base free form surfaces. Using rail curves for simple base surfaces, complicated models can be designed. Also this blending surfaces can be used for path generation in compoud surfaces.

  • PDF

복합 곡면에서 매개변수 조정에 의한 블렌딩곡면 생성 (Blending Surface with Parameter Control in Compound Surface)

  • 김종열;이희관;공영식;양균의
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.148-155
    • /
    • 1998
  • For products of various shapes, compound surfaces are used. Blending surfaces are essential to the products of the compound surfaces. In this paper a method of making shape of blending surface flexible with parameter control is discussed. The parameter has quantitative control of shape of the blend. The blending surface is applied to NURBS and simple primitives in solid model. Intersection curves of surfaces is used to provide the blend with generality. Rail curve are found with the intersection curves. The blend is generated by rail curves and parameter control. Also, In strict constraint condition, blending surface with flexible shapes is discussed, keeping ;${GC}^1$ and ;${GC}^2$ continuity between free-formed surfaces and solids. Joining blending ,bridge blending and blending surface at corner are generated.

  • PDF

Interactive and Intuitive Physics-based Blending Surface Design for the Second Order Algebraic Implicit Surfaces

  • Park, Tae-Jung;Kam, Hyeong-Ryeol;Shin, Seung-Ho;Kim, Chang-Hun
    • 한국멀티미디어학회논문지
    • /
    • 제12권6호
    • /
    • pp.842-855
    • /
    • 2009
  • We present a physics-based blending method for the second order algebraic implicit surface. Unlike other traditional blending techniques, the proposed method avoids complex mathematical operations and unwanted artifacts like bulge, which have highly limited the application of the second order algebraic implicit surface as a modeling primitive in spite of lots of its excellent properties. Instead, the proposed method provides the designer with flexibility to control the shapes of the blending surface on interactive basis; the designer can check and design the shape of blending surfaces accurately by simply adjusting several physics parameter in real time, which was impossible in the traditional blending methods. In the later parts of this paper, several results are also presented.

  • PDF

수직 복합 폴리이미드층에서의 액정 배향 특성 (Liquid Crystal Aligning Capabilities on Homeotropic Blending Polyimide Layer)

  • 황정연;서대식;김재형
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.337-340
    • /
    • 2001
  • The control of high pretilt angle far nematic liquid crystal (NLC) with negative dielectric anisotropy on the rubbed blending polyimide (homeotropic and homogeneous alignment) surface were studied. High NLC pretilt angle generated on the blending polyimide (homeotropic polyimide and SE-7492 surface was measured and the NLC pretilt angle increases with blending ratio and rubbing strength. However, the NLC pretilt angle generated on the blending polyimide (homeotropic polyimide and SE-150 surface was not varied. The high pretilt angle the NLC using blending polyimide surface can be acheived.

  • PDF

복합 폴리머 표면에서의 부의 유전율을 가진 네마틱액정의 고프리틸트각 제어 (Control of High Pretilt Angle for Nematic Liquid Crystal of Negative Dielectric Anisotropy on Blending Polymer Surfaces)

  • 황정연;서대식;남상회
    • 한국전기전자재료학회논문지
    • /
    • 제14권12호
    • /
    • pp.1023-1026
    • /
    • 2001
  • The control of high pretilt angle for nematic liquid crystal (NLC) with negative dielectric anisotropy on the rubbed blending polyimide (PI) of homeotropic and homogeneous alignment surface was studied. High LC pretilt angle on the rubbing blending polyimide of homeotropic PI and SE-7492 surface was measured and the LC pretilt angle increased wish blending ratio and rubbing strength. However, the low LC pretilt angle on the rubbed blending polyimide of homeotropic PI and SE-150 surface was measured. The high pretilt angle of NLC can be achieved by using the blending PI surface.

  • PDF

수직 복합 폴리이미드층에서의 액정 배향 특성 (Liquid Crystal Aligning Capabilities on Homeotropic Blending Polyimide Layer)

  • 황정연;서대식;김재형
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.337-340
    • /
    • 2001
  • The control of high pretilt angle for nematic liquid crystal (NLC) with negative dielectric anisotropy on the rubbed blending polyimide (homeotropic and homogeneous alignment) surface were studied. High NLC pretilt angle generated on the blending polyimide (homeotropic polyimide and SE-7492 surface was measured and the NLC pretilt angle increases with blending ratio and rubbing strength. However, the NLC pretilt angle generated on the blending polyimide (homeotropic polyimide and SE-150 surface was not varied. The high pretilt angle the NLC using blending polyimide surface can be achieved.

  • PDF

곡면 모델링에서 3차원 경계 곡면 블렌드 구성에 관한 연구 (A Study on The Construction of 3-Dimensional Edge Blend Surface Modeling)

  • 이창억
    • 기술사
    • /
    • 제27권3호
    • /
    • pp.121-131
    • /
    • 1994
  • 3차원 자유 형상 곡면으로 이루어진 선형을 부분적으로 표현하기란 매우 힘들다. 선박 설계에 컴퓨터를 이용한 기술이 적용되기 시작하면서, 기하학적 모델링 기법이 개발되어 왔다. 선형 모델링에서,곡률 변화가 심한 선체 곡면의 국부적인 곡면 형상을 Blending 기법을 써서 표현하는 연구는 이루어지지 않았다. Blend곡면을 써서, 설계시에 도면상에 표시되는 작은 곡면을 부드럽게 표현하는 방법을, 선체표면과 돌출된 접합 부분을 Blending 하고져 하였다. 본 연구에서는, 두개의 Base곡면에 Blend반지름을 입력 했을 때, Blend곡면에 Blending방법을 이용하여 공간 좌표인 Offsets 데이터를 얻을 수 있도록 선박 설계에 적용하여 보았다.

  • PDF

Blending Surface Modelling Using Sixth Order PDEs

  • You, L.H.;Zhang, Jian J.
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.157-166
    • /
    • 2006
  • In order to model blending surfaces with curvature continuity, in this paper we apply sixth order partial differential equations (PDEs), which are solved with a composite power series based method. The proposed composite power series based approach meets boundary conditions exactly, minimises the errors of the PDEs, and creates almost as accurate blending surfaces as those from the closed form solution that is the most accurate but achievable only for some simple blending problems. Since only a few unknown constants are involved, the proposed method is comparable with the closed form solution in terms of computational efficiency. Moreover, it can be used to construct 3- or 4-sided patches through the satisfaction of continuities along all edges of the patches. Therefore, the developed method is simpler and more efficient than numerical methods, more powerful than the analytical methods, and can be implemented into an effective tool for the generation and manipulation of complex free-form surfaces.

Modified membrane with antibacterial properties

  • Aryanti, P.T.P.;Sianipar, M.;Zunita, M.;Wenten, I.G.
    • Membrane and Water Treatment
    • /
    • 제8권5호
    • /
    • pp.463-481
    • /
    • 2017
  • Bacteria have been considered as a major foulant that initiates the formation of biofilm on the polymeric membrane surface. Some polymeric membranes are naturally antibacterial and have low fouling properties, however, numerous efforts have been devoted to improve their antibacterial performance. These modifications are mostly carried out through blending the membrane with an antibacterial agent or introducing the antibacterial agent on the membrane surface by chemical grafting. Currently, a significant number of researches have reported nanocomposite membrane as a new approach to fabricate an excellent antibacterial membrane. The antibacterial nanoparticles are dispersed homogenously in membrane structure by blending method or coating onto the membrane surface. Aim of the modifications is to prevent the initial attachment of bacteria to membrane surface and kill bacteria when attached on the membrane surface. In this paper, several studies on antibacterial modified membranes, particularly for water treatment, will be reviewed comprehensively. Special attention will be given on polymeric membrane modifications by introducing antibacterial agents through different methods, such as blending, grafting, and coating.