• Title/Summary/Keyword: Blasting media

Search Result 42, Processing Time 0.029 seconds

On the effect of saline immersion to the removal torque for resorbable blasting media and acid treated implants (Resorbable blasting media 및 산처리한 임플란트의 제거회전력에 생리식염수를 적시는 것이 미치는 영향)

  • Kwon, Jae-uk;Cho, Sung-am
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Purpose: The purpose of this study is to investigate the effect of the titanium implant soaked in saline after RBM and acid etched surface treatment on the initial osseointegration by comparing the removal torque and the surface analysis compared to the titanium implant with only RBM and acid etched surface treatment. Materials and Methods: The control group was RBM and acid etched surface treated implants (RBM + HCl), and the test group was implants soaked in saline for 2 weeks after RBM and acid etched surface treatment (RBM + HCl + Sal). The control and test group implants were placed in the left and right tibiae of 10 rabbits, respectively, and at the same time, the insertion torque (ITQ) was measured. After 10 days, the removal torque (RTQ) was measured by exposing the implant site. FE-SEM, EDS, Surface roughness and Raman spectroscopy were performed for the surface analysis of the new implant specimens used in the experiments. Results: There was significant difference in insertion torque and removal torque between control group and experimental group (P = 0.014 < 0.05). Surface roughness of experimental group is higher than control group. Conclusion: Saline soaking after RBM and acid etched surface treatment of titanium implants were positively affect the initial osseointegration as compared to titanium implants with only RBM and acid etched surface treatment.

A Comparative Study on the Effect of Tamping Materials on the Impact Efficiency at Blasting Work (발파작업 시 충전매질에 따른 발파효과 비교 연구)

  • Bae, Sang-Soo;Han, Woo-Jin;Jang, Seung-Yup;Bang, Myung-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.57-65
    • /
    • 2022
  • This study simulated the shock wave propagation through the tamping material between explosives and hole wall at blasting works and verified the effect of tamping materials. The Arbitrary Lagrangian-Eulerian(ALE) method was selected to model the mixture of solid (Lagrangian) and fluid (Eulerian). The time series analysis was carried out during blasting process time. Explosives and tamping materials (air or water) were modeled with finite element mesh and the hole wall was assumed as a rigid body that can determine the propagation velocity and shock force hitting the hole wall from starting point (explosives). The numerical simulation results show that the propagation velocity and shock force in case of water were larger than those in case of air. In addition, the real site at blasting work was modeled and simulated. The rock was treated as elasto-plastic material. The results demonstrate that the instantaneous shock force was larger and the demolished block size was smaller in water than in air. On the contrary, the impact in the back side of explosives hole was smaller in water, because considerable amount of shock energy was used to demolish the rock, but the propagation of compression through solid becomes smaller due to the damping effect by rock demolition. Therefore, It can be proven that the water as the tamping media was more profitable than air.

Blast Design of Hilly Rock Excavation Adjacent to Structures and Facilities (구조물 및 시설물 인접 구릉지의 암반굴착 발파설계)

  • 류창하;선우춘;신희순;정소걸;최병희
    • Tunnel and Underground Space
    • /
    • v.4 no.1
    • /
    • pp.38-46
    • /
    • 1994
  • This paper concerns the design of blasts adjacent to structures and facilities. In order to investigate the site characteristics, measurements of in-situ wave propagation and laboratory tests of rock cores taken from the boreholes were carried out. Effects of rock media and delay intervals on ground vibration levels were identified from over sixty measurements of three times of test blasts. For practical use in the field, an empirical propagation equation was derived so as to reflect the characteristics of rock media and delay effects. Safe limits of vibration level for structures were conservatively established based on various suggested criteria. Safe limits for facilities were adopted so that vibration levels induced by blasting should not exceed the allowable limits specified in the manufacturer's installation condition. Suggested were blast pattern and operation to enhance the rock fracturing and to reduce the ground vibration levels under the restricted conditions.

  • PDF

WETTABILITY AND DRUG DELIVERY OF FUNCTIONALLY GRADED NANO-MICRO POROUS TITANIUM SURFACE

  • Yun, Kwi-Dug;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.307-319
    • /
    • 2008
  • STATEMENT OF PROBLEM: It is known that an anodic oxidation technique, one of the methods for the implant surface treatment, remarkably increased surface area, enhanced wettability and accelerated the initial bone healing. Purpose: This study was performed to evaluate the wettability of anodized titanium surface which has a nanotubular structure, to assess osseointegration after the placement of implant with nano-size tubes on tibia of rats and to analyze quantitatively transferable rhBMP-2 on each surface. MATERIAL AND METHOD: Four different kinds of surface-treated titanium discs (polished (machined surface) group, micro (blasting surface) group, nano (anodizedmachined surface) group, and nano-micro (anodized-blasting surface) group) were fabricated (n=10). Three different media were chosen to measure the surface contact angles; distilled water, plasma and rhBMP-2 solution. After a single drop (0.025 $m{\ell}$) of solution, the picture was taken with the image camera, and contact angle was measured by using image analysis system. For the test of osseointegration, 2 kinds of anodized surface (anodized-machined surface, anodized-blasting surface) implants having 2.0 mm in diameter and 5.0 mm in length inserted into the tibia of Wistar rats. After 3 weeks, tibia were harvested and the specimens were stained with hematoxylin and eosin for histological analysis. To test the possibility of drug delivery, after soaking sample groups in the concentration of 250 ng/$m{\ell}$l of rhBMP-2 for 48 hours, the excess solution of rhBMP-2 were removed. After that, they were lyophilized for 24 hours, and then the rhBMP-2 on the surface of titanium was resolved for 72 hours in PBS. All the extracted solution was analyzed by ELISA. One-way analysis of variance (ANOVA) was performed on the data. RESULTS: The wettability is improved by anodic oxidation. The best wettability was shown on the nano-micro group, and it was followed by nano group, micro group, and polished group. In the histological findings, all implants showed good healing and the new bone formation were observed along the implant surface. After 3 days, nano-micro group delivered the most amount of rhBMP-2, followed by nano group, micro group, and polished group. CONCLUSION: It indicated that anodic oxidation on blasting surface produce functionally graded nano-micro porous structure and enhance hydrophilicity of the surface and osseointegration. The findings suggest that the nano-micro porous structure could be a useful carrier of osteogenic molecules like rhBMP-2.

Bone cutting capacity and osseointegration of surface-treated orthodontic mini-implants

  • Kim, Ho-Young;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.46 no.6
    • /
    • pp.386-394
    • /
    • 2016
  • Objective: The objective of the study was to evaluate the practicality and the validity of different surface treatments of self-drilling orthodontic mini-implants (OMIs) by comparing bone cutting capacity and osseointegration. Methods: Self-drilling OMIs were surface-treated in three ways: Acid etched (Etched), resorbable blasting media (RBM), partially resorbabla balsting media (Hybrid). We compared the bone cutting capacity by measuring insertion depths into artificial bone (polyurethane foam). To compare osseointegration, OMIs were placed in the tibia of 25 rabbits and the removal torque value was measured at 1, 2, 4, and 8 weeks after placement. The specimens were analyzed by optical microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Results: The bone cutting capacity of the etched and hybrid group was lower than the machined (control) group, and was most inhibited in the RBM group (p < 0.05). At 4 weeks, the removal torque in the machined group was significantly decreased (p < 0.05), but was increased in the etched group (p < 0.05). In the hybrid group, the removal torque significantly increased at 2 weeks, and was the highest among all measured values at 8 weeks (p < 0.05). The infiltration of bone-like tissue surface was evaluated by SEM, and calcium and phosphorus were detected via EDS only in the hybrid group. Conclusions: Partial RBM surface treatment (hybrid type in this study) produced the most stable self-drilling OMIs, without a corresponding reduction in bone cutting capacity.

Influence of surface treatment on the insertion pattern of self-drilling orthodontic mini-implants (표면처리가 교정용 미니 임플랜트의 식립수직력과 토크에 미치는 영향)

  • Kim, Sang-Cheol;Kim, Ho-Young;Lee, Sang-Jae;Kim, Cheol-Moon
    • The korean journal of orthodontics
    • /
    • v.41 no.4
    • /
    • pp.268-279
    • /
    • 2011
  • Objective: The purpose of this study was to compare self-drilling orthodontic mini-implants of different surfaces, namely, machined (untreated), etched (acid-etched), RBM (treated with resorbable blasting media) and hybrid (RBM + machined), with respect to the following criteria: physical appearance of the surface, measurement of surface roughness, and insertion pattern. Methods: Self-drilling orthodontic mini-implants (Osstem implant, Seoul, Korea) with the abovementioned surfaces were obtained. Surface roughness was measured by using a scanning electron microscope and surface-roughness-testing machine, and torque patterns and vertical loadings were measured during continuous insertion of mini-implants into artificial bone (polyurethane foam) by using a torque tester of the driving-motor type (speed, 12 rpm). Results: The mini-implants with the RBM, hybrid, and acid-etched surfaces had slightly increased maximum insertion torque at the final stage ($p$ < 0.05). Implants with the RBM surface had the highest vertical load for insertion ($p$ < 0.05). Testing for surface roughness revealed that the implants with the RBM and hybrid surfaces had higher Ra values than the others ($p$ < 0.05). Scanning electron microscopy showed that the implants with the RBM surface had the roughest surface. Conclusions: Surface-treated, self-drilling orthodontic mini-implants may be clinically acceptable, if controlled appropriately.

Removal Torque of Mg-ion Implanted Clinical Implants with Plasma Source Ion Implantation Method (마그네슘 이온주입 임플란트의 뒤틀림 제거력에 관한 연구)

  • Kim, Bo-Hyoun;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.1
    • /
    • pp.41-52
    • /
    • 2009
  • The surface treatment of titanium implant could bring out the biochemical bonding between bone and implant. The purpose of this study was to evaluate the biomechanical bone response of Mg-ion implanted implants with plasma source ion implantation method. Twelve New Zealand white rabbits were included in this study. Each rabbit received one control fixture (blasted with resorbable blasting media, RBM) and three types of Mg ion implanted fixtures in tibiae. The implants were left in place for 6 weeks before the rabbits were sacrificed. Removal torque value and resonance frequency analysis (ISQ) were compared. The repeated measured analysis of variance was used with $P{\leq}0.05$ as level of statistical significance. ISQ was not different among all groups. However, the ISQ was increased after 6 weeks healing. The group had lowest ISQ value showed the greatest increment. Mg-1 implants with 9.4% retained ion dose showed significantly higher removal torque value than that of the other implants. From this results, it is concluded that the Mg-1 implants has stronger bone response than control RBM surface implant.

Study of the Performance of a Dry Cleaning Method for Polluted Ballast Gravel of Railroad Fields (철도부지 오염도상자갈의 건식 정화 기술 성능 연구)

  • Cho, Youngmin;Park, Duckshin;Kwon, Tae-Soon;Lee, Jae-Young
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.552-557
    • /
    • 2015
  • Ballast gravel in a railroad field is often polluted by grease and heavy metals. In this paper, the performances of a dry cleaning method for polluted ballast gravel in which pollutants on the gravel surface can be physically removed was extensively studied. A polluted ballast cleaning device able to shoot emery blasting media onto the surface using compressed air was prepared. Polluted ballast gravel was put into this device for cleaning, with the treatment time varied from 1 to 10 min. The cleaning efficiency of the total petroleum hydrocarbons and heavy metals were studied. The total petroleum hydrocarbon removal efficiency was 70-80% for gravels sampled from a locomotive waiting line, while it was 40-60% for gravels sampled from a turnout area. The heavy metal removal efficiency exceeded 90% for copper and lead, while it was 65-80% for nickel and zinc. This system was found to be effective for the remediation of polluted ballast gravels.

Prospective Clinical Trial of Survival Rate for Two Different Implant Surfaces Using the Osstem(R) SS II Non-submerged Implant System in Partially Edentulous Patients

  • Kim, Su-Gwan;Lim, Chae-Su;Oh, Min-Seok;Park, Jin-Sung;Kim, Seo-Yoon;Seol, Ka-Young
    • Journal of Korean Dental Science
    • /
    • v.2 no.2
    • /
    • pp.35-41
    • /
    • 2009
  • Objective : This study sought to investigate the clinical survival rate of two implants with different surfaces: resorbable blasting media (RBM)-treated and calcium metaphosphate (CMP)-coated implant. Study design : SSII non-submerged implants (Osstem, Seoul, Korea) were placed in a total of 48 patients with mean age of 38.8. At least 31 patients in the experimental group had a CMP-coated implant, and 1 patient in the control group received a, RBM surface implant. The evaluation period was between April 2006 and December 2007. Radiographs, periotest, clinical periodontal examination, and prosthetic adjustment and occlusion were used. Results : The survival rate of the experimental and control groups after 1 year was 97.2% and 100%, respectively. The Wald confidence interval reported for the experimental group was not inferior to the control group. Conclusion : No significant differences were found between the RBM and CMP groups. The observed data suggest that CMP-coated methods can provide favorable clinical results for the functioning and healing of dental implants.

  • PDF

Assessment of Blast-induced Vibration for the Stability of Discontinuous Rock Mass (암반절리를 고려한 발파진동 영향평가)

  • Park, Byung-Ki;Jeon, Seok-Won;Park, Gwang-Jun;Do, Deog-Soo;Kim, Tae-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.485-492
    • /
    • 2005
  • Since blast-induced vibration may cause serious problem to the rock mass as well as the nearby structures, the prediction of blast-induced vibration and the stability evaluation must be performed before blasting activities. Dynamic analysis has been Increased recently in order to analyze the effect of the blast-induced vibration. Most of the previous studies, however, were based on the continuum analysis unable to consider rock joints which significantly affect the wave propagation and attenuation characteristics. They also adopted pressure curves estimated by theoretical or empirical equations as input detonation load, thus there were very difficult to reflect the characteristics of propagating media. In this study, therefore, we suggested a discontinuum dynamic analysis technique which uses velocity waveform obtained from a test blast as an input detonation load. A distinct element program, UDEC was used to consider the effect of rock joints. In order to verify the validity of proposed method, the test blast was simulated. The predicted results from the proposed method showed a good agreement with the measured vibration data from the test blast Through the dynamic numerical modelling on the planned road tunnel and slope, we evaluated the effect of blast-induced vibration and the stability of rock slope.