• Title/Summary/Keyword: Blast load

Search Result 216, Processing Time 0.026 seconds

EIS Properties of Lightweght Aggregate According to Surface Coating (표면 코팅 유무에 따른 경량골재의 EIS 특징)

  • Pyeon, Myeong-Jang;Jeong, Su-Mi;Kim, Ju-Sung;Kim, Ho-Jin;Park, Sun-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.107-108
    • /
    • 2022
  • In recent years, the construction industry has a tendency to increase of high-rise builidngs. High rise buildings can use limited space efficiently. But High rise buildings have problem that have extremely heavy weight. Various studies are being conducted to reduce the weight of buildings. Although lightweight aggregate is a meterial that can effectively reduce the weight of buildings, the strength of the aggregate itself is weak and the absorption rate is high, so the strength of the ITZ(Interfacial Transition Zone) area is weak. Therefore, it is essential to improve the interfacial area when using lightweight aggregates. In this study, an experiment was conducted to improve the adhesion between the aggregate and cement paste and to strengthen the interfacial area by coating the surface of the lighteight aggregate with Blast Furnace Slag. To confirm the improvement, compressive strength and EIS(Electrochemical Impedance Spectroscopy) measurements were perfromed. Using EIS, the change in electrical resistance of the cement hardened body was confirmed. As a result, it was confirmed that the lightweight aggregate coated on the surface showed highter compressive strength and electrical resistance than the non-coated lightweight aggregate, and that the coating material was filled in the interfacial area and inside the aggregate that helped to strengthen the compresssive strength and higher electrical resistance.

  • PDF

Dynamic behavior Simulation for Explosion in Two-lane Horseshoe Shaped Tunnel (2차로 마제형 터널 내 폭발 시 동적 거동 시뮬레이션)

  • Shim, Jaewon;Kim, Nagyoung;Lee, Hyunseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.5
    • /
    • pp.23-33
    • /
    • 2020
  • As the scale of the economy expands, the number of cases of damage in enclosed spaces such as tunnels is increasing due to the accident of transportation vehicles of dangerous substances such as explosive flammable materials that have increased rapidly. In the case of road tunnels in particular, in the aspect of protection against the long-winding trend and the environment in the downtown area, the number of cases of passing through the downtown area increases, and securing the safety of structures against unexpected extreme disasters such as explosions during tunnel passage is very urgent. For this reason, developed countries are already conducting a review of internal bombardment, but there are almost no evaluation and countermeasures for explosion risk in Korea. Therefore, in this study, in order to evaluate the explosion safety of road tunnels, a boiling liquid explosive explosion (BLEVE), which is considered to have the greatest explosion load among vehicles driving on the road, is set as a reference explosion source, and the equivalent TNT explosion load is used for simulation of the explosion. A method of conversion was presented. In addition, by applying the derived explosion load, dynamic behavior simulation was performed by assuming various variables for the tunnel, and the explosion safety of the tunnel was analyzed.

Evaluating Impact Resistance of Externally Strengthened Steel Fiber Reinforced Concrete Slab with Fiber Reinforced Polymers (섬유 보강재로 외부 보강된 강섬유 보강 콘크리트 슬래브의 충격저항성능 평가)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Lee, Jin-Young;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.293-303
    • /
    • 2012
  • Recently, as construction technology improved, concrete structures not only became larger, taller and longer but were able to perform various functions. However, if extreme loads such as impact, blast, and fire are applied to those structures, it would cause severe property damages and human casualties. Especially, the structural responses from extreme loading are totally different than that from quasi-static loading, because large pressure is applied to structures from mass acceleration effect of impact and blast loads. Therefore, the strain rate effect and damage levels should be considered when concrete structure is designed. In this study, the low velocity impact loading test of steel fiber reinforced concrete (SFRC) slabs including 0%~1.5% (by volume) of steel fibers, and strengthened with two types of FRP sheets was performed to develop an impact resistant structural member. From the test results, the maximum impact load, dissipated energy and the number of drop to failure increased, whereas the maximum displacement and support rotation were reduced by strengthening SFRC slab with FRP sheets in tensile zone. The test results showed that the impact resistance of concrete slab can be substantially improved by externally strengthening using FRP sheets. This result can be used in designing of primary facilities exposed to such extreme loads. The dynamic responses of SFRC slab strengthened with FRP sheets under low velocity impact load were also analyzed using LS-DYNA, a finite element analysis program with an explicit time integration scheme. The comparison of test and analytical results showed that they were within 5% of error with respect to maximum displacements.

Impact Resistance Evaluation of RC Beams Strengthened with Carbon FRP Sheet and Steel Fiber (CFRP 시트 및 강섬유로 보강된 RC 보의 충격저항 성능 평가)

  • Cho, Seong-Hun;Min, Kyung-Hwan;Kim, Yun-Ji;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.719-725
    • /
    • 2010
  • The analysis and experimental program of reinforced concrete (RC) structures for resistance against such extreme loads as earthquake, blast, and impact have been carried by many researchers and designers. Under the extreme loads, a large amount of energy is suddenly exerted to the structure, hence if the structure fails to absorb the impact energy, catastrophic collapse may occur. To prevent catastrophic collapse of structures, reinforced concrete must have adeguate toughness or it needs to be strengthened. The FRP strengthening method and SFRC are studied widely in resistance of impact load because of their high energy absorption capacity. In this study, drop weight impact tests were implemented to evaluate the impact resistance of SFRC and FRP strengthened RC beam while the total steel fiber volume fractions was fixed at 0.75% carbon FRP flexural strengthened RC beams. Futhermore, to prevent the shear-plug cracks when the impact load strikes the beams, additional FRP shear strengthening method are applied. The experimental, results showed that the FRP strengthened RC SFRC beams has high resistance of shear-plug cracks and crack width and SFRC has high resistance of concrete spalling failure compared to normal RC beams. The FRP flexural and shear strengthening RC beams has weakness in the spalling failure because the impact load concentrated the concrete face which is not strengthened with FRP sheets.

ITZ Analysis of Cement Matrix According to the Type of Lightweight Aggregate Using EIS (EIS를 활용한 경량골재 종류별 시멘트 경화체의 계면특성 분석)

  • Kim, Ho-Jin;Jung, Yoong-Hoon;Bae, Je-Hyun;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.498-505
    • /
    • 2020
  • Aggregate occupies about 70-85% of the concrete volume and is an important factor in reducing the drying shrinkage of concrete. However, when constructing high-rise buildings, it acts as a problem due to the high load of natural aggregates. If the load becomes large during the construction of a high-rise building, creep may occur and the ground may be eroded. Material costs increase and there are financial problems. In order to reduce the load on concrete, we are working to reduce the weight of aggregates. However, artificial lightweight aggregates affect the interface between the aggregate and the paste due to its higher absorption rate and lower adhesion strength than natural aggregates, affecting the overall strength of concrete. Therefore, in this study, in order to grasp the interface between natural aggregate and lightweight aggregate by type, we adopted a method of measuring electrical resistance using an EIS measuring device, which is a non-destructive test, and lightweight bone. The change in the state of the interface was tested on the outside of the material through a blast furnace slag coating. As a result of the experiment, it was confirmed that the electric resistance was about 90% lower than that in the air-dried state through the electrolyte immersion, and the electric resistance differs depending on the type of aggregate and the presence or absence of coating. As a result of the experiment, the difference in compressive strength depending on the type of aggregate and the presence or absence of coating was shown, and the difference in impedance value and phase angle for each type of lightweight aggregate was shown.

Properties of Alkali-Activated Cement Mortar by Curing Method (양생 방법에 따른 알칼리활성 시멘트 모르타르의 특성)

  • Kim, Ji-Hoon;Lee, Jae-Kyu;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Globally, there are environmental problems due to greenhouse gas emissions. $CO_2$ emissions rate of the cement industry is very high, but the continued demand of cement is needed in the future. In this study, in order to reduce the environmental impact of $CO_2$ emissions from cement production. The experiments were carried out for the development of non-sintered cement (have not undergone firing burning) by granulated ground blast furnace slag. In order to compare the characteristics by curing, an experiment was conducted by changing the curing conditions such as atmospheric steam curing, observe the mechanical properties for the measurement of flexural compressive strength by mortar, observe the chemical properties such as acid resistance, $Cl^-$ penetrate resistance and analyzed the mechanism of hydration by XRD, SEM experiments. From the experimental results, as compared with portland cement usually confirm the mechanical and chemical properties excellent, it is expected be possible to apply to the undersea, underwater and underground structures that require superior durability. In addition, based on the excellent compressive strength by steam curing, it is expected to be possible to utilize as a cement replacement material in the secondary product of concrete. In the future, to solve the problem through continued research, it will be expected to reduce the effect of environmental load and to be excellent economics.

Computational Numerical Analysis and Experimental Validation of the Response of Reinforced Concrete Structures under Internal Explosion (내부폭발 시 철근콘크리트 구조물 거동에 대한 전산수치해석과 실험적 검증)

  • Ji, Hun;Moon, Sei-Hoon;Chong, Jin-Wung;Sung, Seung-Hun;You, Yang-Sun
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.1
    • /
    • pp.101-109
    • /
    • 2018
  • Field experiments as well as numerical analyses with finite element analysis codes are two valuable and complemental ways to understand the structural response under explosive blast load. However, there seems to be only limited information available about finite element analysis and experimental validation on the response of structural components under internal explosions. For complementary use of the two ways, the numerical analyses should be validated with field experiments by comparing their results. In this paper, a small-scaled reinforced concrete building with a room is employed for experimental investigations. An amount of TNT is detonated at the center of the room. Pressure at three different sites in the room, displacement of centers of two walls, and damage patterns of four walls are measured and compared to results from numerical analyses. The experimental results are much similar to the numerical analyses results. The finite element analysis code ANSYS AUTODYN is employed to numerically analyze both pressure distribution inside the room and response of walls subjected to blast pressure. The feasibility and validity of the numerical analysis on the reponses of structural components under internal explosions are discussed in terms of structural damage assessment, and evaluated as the same damage in the analysis and the experiments.

AN EXPERIMENTAL STUDY OF NEWLY DESIGNED IMPLANT WITH RBM SURFACE IN THE RABBIT TIBIA : RESONANCE FREQUENCY ANALYSIS AND REMOVAL TORQUE STUDY

  • Won Mi-Kyoung;Park Chan-Jin;Chang Kyoung-Soo;Kim Chang-Whe;Kim Yung-Soo;Isa Zakiahbt Mohd;Ariffin Yusnidar Tajul
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.6
    • /
    • pp.720-731
    • /
    • 2003
  • Statement of problem. The importance of fixture design and surface treatment. Purpose. The clinical success of dental in plants is affected by many factors such like as degree of osseointegration, the effective load dispersion for the prostheses, and a lot of attempts have been made to overcome the difficulties. In this study, efforts were made to find the possibility of clinical acceptance of the dental implants of newly designed surface and resorbable blast media surcace. Materials and methods. In this study, two groups of custom-made, screw-shaped implants were prepared. The first with the consisting of Branemark clone design and the other with the new design. These implants were divided into four groups according to the kinds of surface treatment. Four implants($AVANA^{(R)}$, Osstem, Busan, Korea)of each group were installed in twenty rabbits. Group A was consisted of Branemark done implant left as machined, Group B with Branemark clone implants with RBM(Resorbable blast media) surface, Group C with newly designed implants left as machined and Group D with newly designed implants with RBM surface. One of the twenty rabbits died from inflammation and the observation was made for six weeks. Specimens from four groups were observed using scanning electron microscopy with 40, 100, 1000 magnification power and microsurface structures were measured by white-light scanning interferometry for three dimensional surface roughness measurements(Accura $2000^{(R)}$, Intek-Plus, Korea.). Removal torque was measured in 17 rabbits using digital torque gauge(MGT 12R, Mark-10 corp., NY, U.S.A.) immediately after the sacrifice and two rabbits were used for the histologic preparation(EXAKT $310^{(R)}$, Heraeus Kulzer, wehrheim, Germany) of specimens and observed under light microscope. Resonance frequency measurement($Osstell^{(R)}$) was taken with the 19 rabbits at the beginning of the implant fixation and immediately after the sacrifice. Results. Following results were taken from the experiment. 1. The surface of the RBM implants as seen with SEM had rough and irregular pattern with reticular formation compared to that of fumed specimens showing different surface topographies. 2. The newly designed implant with RBM surface had high removal torque value among four groups with no statistical significance. The average removal torque was $49.95{\pm}6.70Ncm$ in Group A, $51.15{\pm}4.40Ncm$ in Group B, $50.78{\pm}9.37Ncm$ in Group C, $51.09{\pm}4.69Ncm$ in Group D. 3. The RFA values were $70.8{\pm}4.3Hz$ in Group A, $71.8{\pm}3.1Hz$ in Group B, $70.9{\pm}2.5Hz$, $72.7{\pm}2.5Hz$ in Group D. Higher values were noted in the groups which had surface treatment compared to the untreated groups with no statistical significance. 4. The results from the histomorphometric evaluation showed a mean percentage of bone-to-implant contact of $45{\pm}0.5%$ in Group A, $55{\pm}3%$ in Group B, $49.5{\pm}0.5%$ in Group C, and $55{\pm}3%$ in Group D. Quite amount of newly formed bone were observed at the surface RBM-treated implants in bone marrow space.

Collapse Simulations of High-Rise RC Building Using ELS Software and Application of Explosive Demolition Methods to Transition Process Analysis from Local Damage to Progressive Collapse (ELS를 이용한 고층 RC 빌딩의 붕괴해석 및 발파해체해석 기법의 국부손상-연쇄붕괴 전이과정 해석에 응용)

  • Kim, Hyon-Soo;Park, Hoon;Kim, Seung-Kon;Lee, Yeon-Gyu;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.29 no.2
    • /
    • pp.1-12
    • /
    • 2011
  • Progressive collapse analyses of high-rise buildings subjected to abnormal loading such as fires, impacts, earthquakes, typhoon, bomb blasts etc. are intended. However it is difficult to perform collapse experiments of the real scale building to determine the capacity of the structure under an extreme loading events. In this study, collapse behavior of a 15 story RC structure building loaded by external explosion pressures were simulated using Extreme Loading Structures (ELS) software. The standoff distance between the RC building and explosives of 1500 kg was 1, 2, 5, 10, and 15 meters. The explosive demolition analysis techniques based on removal of partial support structures following blast scenario was adapted to investigate the transition process of progressive collapse-local damage.

Determination of Mode I Fracture Toughness of Rocks Using Wedge Splitting Test (쐐기 분열 시험을 이용한 암석의 모드 I 파괴인성 측정)

  • Ko, Tae Young;Kim, Taek Kon;Lee, Dae Hyuk
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.523-531
    • /
    • 2019
  • In the applications of rock mechanics or rock engineering including drill and blast, drilling and mechanical excavation, the fracture toughness is an important factor. Several methods have been proposed to measure the fracture toughness of rocks. In this study, wedge splitting test specimen which is prepared with ease and tested under compression loading was used to obtain mode I fracture toughness of rocks. The equation of stress intensity factor through numerical analysis is proposed from the stress state of crack tip considering both vertical and horizontal loads due to the vertical load acting on the wedge. The validity of the wedge splitting test method was confirmed by comparing the mode I fracture toughness values obtained by the GD and SENB test specimens.