• Title/Summary/Keyword: Blast design

Search Result 365, Processing Time 0.026 seconds

Study on Optimization of Blast Design for Improving Fragmentation in Jeju Basalt Rock Area (제주도 현무암에서 파쇄도 향상을 위한 최적 발파 설계 연구)

  • Yang, Hyung-Sik;Kim, Nam-Soo;Jang, Hyong-Doo;Kim, Won-Beom;Ko, Young-Hun;Kim, Seung-Jun;Kim, Jeong-Gyu;Moon, Hee-Sook
    • Explosives and Blasting
    • /
    • v.29 no.2
    • /
    • pp.89-99
    • /
    • 2011
  • Recently on Jeju island there has been a lot of development and construction. However random distribution of porous basalt and clinker seam generated from volcanic activities often interrupt and greatly reduce efficiency of blasting necessary for construction. Three test blasts were operated to solve the inefficiency problem and results indicated that a powder factor of 0.40~0.45 $kg/cm^3$ is necessary to increase the efficiency of blasting. Also the blasting scheme should be concerned whether clinker seams exists in excavation levels or not.

Strength Development of the Concrete at Early Age subjected to Low Temperature depending on Admixture Types (혼화재 종류 변화에 따른 저온조건하 콘크리트의 초기강도 발현 특성)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.145-151
    • /
    • 2007
  • In this paper, tests are carried out in order to investigate the strength development of concrete under various binder types, W/B and curing temperature ranged from $5{\sim}20^{\circ}C$. Fly ash and blast furnace slag were incorporated by as much as 30%, respectively. Strength development of concrete are estimated using Logistic model and strength ratio of concrete at 28days to that at early age are also investigated. According to experimental results, it is found that good agreements are obtained between measured values and calculated ones using logistic model below $20^{\circ}C$. Strength ratio of concrete at 28days to that at early age increases in case W/B decreases and curing temperature increases. Tables and graphs for strength ratio of concrete are provided in this paper. It is capable of obtaining and predicting the periods to attain design strength by considering increment factor of strength easily with the table and graphs presented in this paper. This paper presents the reference data to decide removal time of form, time to reach target strength and strength inspection of remicon whether the test specimens meet the specified criteria of compressive strength. Multi regression models with respect to the relationship between 7days compressive strength and 28 days compressive strength depending on W/B and admixture types are presented.

Experimental Study on Rainfall Runoff Reduction Effects by Permeable Polymer Block Pavement (투수성 폴리머 블록 포장에 의한 우수 유출 저감 효과에 관한 실험적 연구)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.157-166
    • /
    • 2012
  • Most of the roads are paved with impermeable materials such as asphalt concrete and cement concrete, and in the event of heavy rainfall, rainwater directly flows into river through a drainage hole on the pavement surface. This large quantity of rainwater directly spilled into the river frequently leads to the flooding of urban streams, damaging lowlands and the lower reaches of a river. In recent years there has been a great deal of ongoing research concerning water permeability and drainage in pavements. Accordingly, in this research, a porous polymer concrete was developed for permeable pavement by using unsaturated polyester resin as a binder, recycled aggregate as coarse aggregate, fly ash and blast furnace slag as filler, and its physical and mechanical properties were investigated. Also, 3 types of permeable polymer block by optimum mix design were developed and rainfall runoff reduction effects by permeability pavement using permeable polymer block were analyzed based on hydraulic experimental model. The infiltration volume, infiltration ratio, runoff initial time and runoff volume in permeability pavement with permeable polymer block of $300{\times}300{\times}80$ mm were evaluated for 50, 100 and 200mm/hr rainfall intensity.

Process Modeling of an Iron Ore Sintering Bed for Flue Gas Recirculation (배가스 재순환 적용을 위한 제철 소결 베드 프로세스 모델링)

  • Ahn, Hyung-Jun;Choi, Sang-Min;Cho, Byung-Kook
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.4
    • /
    • pp.23-30
    • /
    • 2011
  • In the iron and steel manufacturing, sintering process precedes blast furnace to prepare feed materials by agglomerating powdered iron ore to form larger particles. There are several techniques which have devised to improve sintering production and productivity including flue gas recirculation(FGR) and additive gas enriched operation. The application of those techniques incurs variations of process configurations as well as inlet and outlet gas conditions such as temperature, composition, and flow rate which exert direct influence on reactions in the bed or the operation of the entire plant. In this study, an approach of sintering bed modeling using flowsheet process simulator was devised in consideration of FGR and the change of incoming and outgoing gas conditions. Results of modeling for both normal and FGR sintering process were compared in terms of outgoing gas temperature, concentration, and moisture distribution pattern as well as incoming gas conditions. It is expected to expand the model for various process configurations with FGR, which may provide the usefulness for design and operation of sintering plant with FGR.

Diverse Application of ECC Designed with Ground Granulated Blast Furnace Slag

  • Kim, Jeong-Su;Kim, Yun-Yong;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.11-18
    • /
    • 2007
  • In the recent design of high ductile engineered cementitious composites (ECC), optimizing both processing and mechanical properties for specific applications is critical. This study employs a method to develop useful ECC produced with slag particles (slag-ECC) in the field, which possesses different fluid properties to facilitate diverse types of processing (i.e., self-consolidating or spray processing). Control of rheological modulation was regarded as a key factor to allow the performance of the desired processing while retaining the ductile material properties. To control the rheological properties of the composite, the basic slag-ECC composition was initially obtained, determined based on micromechanics and steady-state cracking theory. The stability and consequent viscosity of the suspensions were then mediated by optimizing the dosage of the chemical and mineral admixtures. The rheological properties altered through this approach were revealed to be effective in obtaining ECC-hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension, allowing the readily achievement of the desired function of the fresh ECC.

Physical Properties of 50MPa and 80MPa Ternary High Strength Concretes before and after Concrete Pumping

  • Lee, Bum-Sik;Kim, Seong-Deok;Jun, Myoung-Hoon;Park, Sung-Sik;Park, Su-Hee;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.451-459
    • /
    • 2012
  • At the Korea Land and Housing Corporation(LH), concretes with high design strength of 50 MPa and 80 MPa that are composed only of ordinary Portland cement, blast furnace slag, and fly ash are developed. To determine whether the developed high strength concretes have the same properties when they are produced in batch plant(B/P) condition in the ready mixed concrete plant, and as existing high strength concretes, field tests are performed and material properties are evaluated. To investigate the material properties of the high strength concretes before and after pumping, compressive strength, flowability, air content, hydration temperature, pumping and compactability are evaluated. In field tests, before and after pumping, flowability satisfied the relevant criteria. In terms of air content, while it was slightly decreased after pumping, it satisfied the requirements. Hydration temperature criteria were satisfied, and compactability was excellent as well. The study found that the developed ternary high strength concretes have the same properties as existing high strength concretes. They can also be useful for the construction of high-rise buildings, as they are economical.

Characteristic Evaluation of Line Diffusers for Air Quality Improvement of Laboratory (실험실 공기질 개선을 위한 라인디퓨져의 특성 평가)

  • Cho, Su-Hyen;Lee, Chul-Ku
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.14-22
    • /
    • 2008
  • This study is aimed at suggesting a linear-type diffuser which is excellent in terms of range and elegance like existing diffusers in which amount and direction of wind can be freely controled, out of linear-type diffusers with the highest possibility to be adopted for living space of apartments whose height between floors is not so high and utilizing the linear-type diffuser in design. For the purpose, I examined necessary flow and noise properties of linear-type diffusers. Besides, I evaluated its ventilation capacity for persons in there by applying this in the actual living space. I evaluated features and air blast and found that in time of horizontal and vertical effusion, its T/L ratio is 1-1.5, similar to existing cardioid-type linear diffusers, while in time of slope effusion, it is similar to horizontal effusion in terms of range and it has medium figure in terms of pressure drop and effusion speed, indicating it can provide safe and pleasant indoor environment for persons in there in terms of ventilation.

Mechanical and fracture properties of glass fiber reinforced geopolymer concrete

  • Midhuna, M.S.;Gunneswara Rao, T.D.;Chaitanya Srikrishna, T.
    • Advances in concrete construction
    • /
    • v.6 no.1
    • /
    • pp.29-45
    • /
    • 2018
  • This paper investigates the effect of inclusion of glass fibers on mechanical and fracture properties of binary blend geopolymer concrete produced by using fly ash and ground granulated blast furnace slag. To study the effect of glass fibers, the mix design parameters like binder content, alkaline solution/binder ratio, sodium hydroxide concentration and aggregate grading were kept constant. Four different volume fractions (0.1%, 0.2%, 0.3% and 0.4%) and two different lengths (6 mm, 13 mm) of glass fibers were considered in the present study. Three different notch-depth ratios (0.1, 0.2, and 0.3) were considered for determining the fracture properties. The test results indicated that the addition of glass fibers improved the flexural strength, split tensile strength, fracture energy, critical stress intensity factor and critical crack mouth opening displacement of geopolymer concrete. 13 mm fibers are found to be more effective than 6 mm fibers and the optimum dosage of glass fibers was found to be 0.3% (by volume of concrete). The study shows the enormous potential of glass fiber reinforced geopolymer concrete in structural applications.

Design and Performance Evaluation of Cooperative Hybrid CDD Scheme in OFDMA Up-link Network (OFDMA 상향링크 네트워크에서 협력 하이브리드 기법의 설계 및 성능 평가)

  • Kim, Dae-Hwan;Song, Hyoung-Kyu;Cho, We-Duke
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7C
    • /
    • pp.435-442
    • /
    • 2011
  • The MIMO has weak points such as size and cost of systems and the complexity of hardware augment. Thus, the cooperative transmission techniques have been recently discussed briskly and it also solves problems by increase of shadowy area. However, limited cooperation scheme is utilized due to a single-antenna at the destination. The base station is simply equipped with multiple antennas. When the base station has multiple antennas, cooperative diversity and multiplexing schemes can be easily applied in the base station. To guarantee reliability with high throughput, a cooperative hybrid cyclic relay diversity transmission scheme is proposed which can use an arbitrary number of relays without rate loss and a modification of the base station. The presented results show that the proposed schemes can be effectively applied to the existing various MIMO-OFDM communication system.

Mesoscale modelling of concrete for static and dynamic response analysis -Part 1: model development and implementation

  • Tu, Zhenguo;Lu, Yong
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.197-213
    • /
    • 2011
  • Concrete is a heterogeneous material exhibiting quasi-brittle behaviour. While homogenization of concrete is commonly accepted in general engineering applications, a detailed description of the material heterogeneity using a mesoscale model becomes desirable and even necessary for problems where drastic spatial and time variation of the stress and strain is involved, for example in the analysis of local damages under impact, shock or blast load. A mesoscale model can also assist in an investigation into the underlying mechanisms affecting the bulk material behaviour under various stress conditions. Extending from existing mesoscale model studies, where use is often made of specialized codes with limited capability in the material description and numerical solutions, this paper presents a mesoscale computational model developed under a general-purpose finite element environment. The aim is to facilitate the utilization of sophisticated material descriptions (e.g., pressure and rate dependency) and advanced numerical solvers to suit a broad range of applications, including high impulsive dynamic analysis. The whole procedure encompasses a module for the generation of concrete mesoscale structure; a process for the generation of the FE mesh, considering two alternative schemes for the interface transition zone (ITZ); and the nonlinear analysis of the mesoscale FE model with an explicit time integration approach. The development of the model and various associated computational considerations are discussed in this paper (Part 1). Further numerical studies using the mesoscale model for both quasi-static and dynamic loadings will be presented in the companion paper (Part 2).