• Title/Summary/Keyword: Blast design

Search Result 365, Processing Time 0.024 seconds

The Role of PPV and PVS in Controlled Blasting (제어발파의 설계 및 관리 과정에서의 PPV와 PVS의 역할)

  • Choi, Byung-Hee;Ryu, Chang-Ha;Hwang, Hyun-Joo;Choi, Yong-Kun;Ahn, Myung-Seog
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.1-10
    • /
    • 2008
  • The safe level for residential structures has usually been prescribed as just 'particle velocity' in various specifications in Korea. It implies that there is a possibility of interpreting the 'particle velocity' as the PPV (Peak Particle Velocity), PVS (Peak Vector Sum), or something else, depending on the interpreter. As a result, there have always been some difficulties in both designing a controlled blasting and controling the blast-induced ground vibrations. This paper is intended to show what the role of the safe level criteria such as PPV or PVS is, and also how we should use the concept of the scaled distance equation in a controlled blast design. The paper also emphasizes the importance of the allowable level for various residential structures and its uses in each stage of the controlled blast design.

Effects of Input Parameters in Numerical Modelling of Dynamic Ground Motion under Blasting Impact (발파하중을 받는 지반의 동적 거동 수치 모델링에서 입력변수의 영향)

  • Ryu, Chang-Ha;Choi, Byung-Hee;Jang, Hyung-Su;Kang, Myoung-Soo
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.255-263
    • /
    • 2015
  • Explosive blasting is a very useful tool for mining and civil engineering applications. It, however, may cause severe environmental hazards on adjacent structures due to blasting impact. Blast engineers try to make optimum blast design to provide efficient performance and to minimize the environmental impact as well. It requires a pre-assessment of the impacts resulting from the blasting operation in design stage. One of the common procedures is to evaluate the proposed blast pattern through a series of test blasting in the field. Another approach is to evaluate the possible environmental effects using the numerical methods. There are a number of input parameters to be prepared for the numerical analysis. Some of them are well understood, while some are not. This paper presents some results of sensitivity analysis of the basic input parameters in numerical modelling of blasting problems so as to provide sound understanding of the parameters and some guidelines for input preparation.

Blast Analysis of Single Degree of Freedom Plant Structures Considering Static Displacement (정적변위를 고려한 플랜트 구조물의 단자유도 폭발 해석)

  • Lee, Jae-Kyoon;Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.317-324
    • /
    • 2022
  • In this paper, an analysis method that considers the initial static displacement of structural members using an equivalent single-degree-of-freedom system is presented. Newmark's dynamic analysis algorithm was improved to consider the effect of the initial static displacements of structural members. The effect of the initial static displacement on the maximum response according to the assumed duration of the blast load and natural period of the member was investigated. The effects of positive and negative static displacements on the maximum dynamic responses of structural members subjected to a positively applied blast load were also studied. Modified response charts for the shock-type and pressure-type waves are presented so that static displacements can easily be considered. Using a design example, we demonstrate the significance of the modified response chart that considers the static displacement. Based on the results of this study, the maximum response of a the structural member can be easily obtained whilst considering its initial static displacement. The modified response chart presented in this study can be used for the structural design of plants and military facilities.

Effect of shear zone on dynamic behaviour of rock tunnel constructed in highly weathered granite

  • Zaid, Mohammad;Sadique, Md. Rehan;Alam, M. Masroor;Samanta, Manojit
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.245-259
    • /
    • 2020
  • Tunnels have become an indispensable part of metro cities. Blast resistance design of tunnel has attracted the attention of researchers due to numerous implosion event. Present paper deals with the non-linear finite element analysis of rock tunnel having shear zone subjected to internal blast loading. Abaqus Explicit schemes in finite element has been used for the simulation of internal blast event. Structural discontinuity i.e., shear zone has been assumed passing the tunnel cross-section in the vertical direction and consist of Highly Weathered Granite medium surrounding the tunnel. Mohr-Coulomb constitutive material model has been considered for modelling the Highly Weathered Granite and the shear zone material. Concrete Damage Plasticity (CDP), Johnson-Cook (J-C), Jones-Wilkins-Lee (JWL) equation of state models are used for concrete, steel reinforcement and Trinitrotoluene (TNT) simulation respectively. The Coupled-Eulerian-Lagrangian (CEL) method of modelling for TNT explosive and air inside the tunnel has been adopted in this study. The CEL method incorporates the large deformations for which the traditional finite element analysis cannot be used. Shear zone orientations of 0°, 15°, 30°, 45°, 60°, 75° and 90°, with respect to the tunnel axis are considered to see their effect. It has been concluded that 60° orientation of shear zone presents the most critical situation.

DEVELOPMENT OF AUTOMATIC AIR BLAST WATERING MACHINE FOR MUSHROOM GROWING

  • Choe, K.J.;Park, H.J.;Park, K.K.;Lee, S.H.;Yu, B.K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.613-622
    • /
    • 2000
  • Watering operation for oyster mushroom growing houses is regarded as drudgery and time consuming farm operation for growers. Most of mushroom growing beds in oyster mushroom growing houses are designed as two-row with four floor beds, therefore the watering and ventilation between the bed floors are much difficult for farmers because of its structural design. The study aimed to reduce the watering operation and improve the mushroom growing environment through the humidification and air supply on mushroom growing beds. Results showed that appropriate size of nozzle is between 0.8~0.5ml/s for the humidification and higher than the 2.0ml/s for the watering. The optimum water supply pressure was regarded as between 1.0~2.0MPa and the uniform distribution of droplet on the bed showed on air flow speed of 14m/s. The prototype was equipped with twin nozzle with. the humidification nozzle of 0.85ml/s and watering nozzle of 5.0ml/s, and the air blast fan with the air speed of 10m/sec in each air spout. In the field test in a practical scale mushroom growing house, it was well operated dependant on the set desire by a electric control unit. The machine can be practically used as air blast watering and air blast humidification for oyster mushroom growing farms without manual.

  • PDF

A Study on Basic Properties of the Reinforced-roadbed Material Using Water Quenched Blast Furnace Slag (수재슬래그를 이용한 강화노반재료의 기초적 특성 연구)

  • 이선복;윤지선
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.103-110
    • /
    • 2003
  • The development of reinforced-roadbed material in substitute for existing roadbed is necessary to protect its failure from the dynamic stress and vibration caused by the traveling of the high-speed and heavy trains. The water quenched blast furnace slag having potential hydraulic reactivity is one of the materials in substitute for soil reinforced-roadbed. We carried out the study of basic properties of roadbed material using Portland cement and CSA(calcium sulphoaluminate) as the activator for the evaluation of its application. As the result of the strength test, this material satisfied design criterion for reinforced-roadbed. Optimum mixing ratio of this reinforced-roadbed material was 15 ~ 17.5 percent of cement and 2.5 percent of CSA by weight of the blast furnace slag. Especially, as permeability is above $10^{-3}$cm/sec, this material proved to have functions of both reinforced roadbed and drainage layer.

Dynamic performance of girder bridges with explosion-proof and aseismic system

  • Wang, Jingyu;Yuan, Wancheng;Wu, Xun;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.419-426
    • /
    • 2017
  • Recently, the transportation of dangerous explosive goods is increasing, which makes vehicle blasting accidents a potential threat for the safety of bridge structures. In addition, blasting accidents happen more easily when earthquake occurs. Excessive dynamic response of bridges under extreme loads may cause local member damage, serviceability issues, or even failure of the whole structure. In this paper, a new explosion-proof and aseismic system is proposed including cable support damping bearing and steel-fiber reinforced concrete based on the existing researches. Then, considering one 40m-span simply supported concrete T-bridge as the prototype, through scale model test and numerical simulation, the dynamic response of the bridge under three conditions including only earthquake, only blast load and the combination of the two extreme loads is obtained and the applicability of this explosion-proof and aseismic system is explored. Results of the study show that this explosion-proof and aseismic system has good adaptability to seism and blast load at different level. The reducing vibration isolation efficiency of cable support damping bearing is pretty high. Increasing cables does not affect the good shock-absorption performance of the original bearing. The new system is good at shock absorption and displacement limitation. It works well in reducing the vertical dynamic response of beam body, and could limit the relative displacement between main girder and capping beam in different orientation so as to solve the problem of beam falling. The study also shows that the enhancement of steel fibers in concrete could significantly improve the blast resistance of main beam. Results of this paper can be used in the process of antiknock design, and provide strong theoretical basis for comprehensive protection and support of girder bridges.

Effect of Foliar and Root Application of Silicon Against Rice Blast Fungus in MR219 Rice Variety

  • Abed-Ashtiani, Farnaz;Kadir, Jugah-Bin;Selamat, Ahmad-Bin;Hanif, Ahmad Husni Bin-Mohd;Nasehi, Abbas
    • The Plant Pathology Journal
    • /
    • v.28 no.2
    • /
    • pp.164-171
    • /
    • 2012
  • Rice blast disease caused by Magnaporthe grisea (Hebert) Barr [teleomorph] is one of the most devastating diseases in rice plantation areas. Silicon is considered as a useful element for a large variety of plants. Rice variety MR219 was grown in the glasshouse to investigate the function of silicon in conferring resistance against blast. Silica gel was applied to soil while sodium silicate was used as foliar spray at the rates of 0, 60, 120, 180 g/5 kg soil and 0, 1, 2, 3 ml/l respectively. The treatments were arranged in a completely randomized design. Disease severity and silicon content of leaves were compared between the non-amended controls and rice plants receiving the different rates and sources of silicon. Silicon at all rates of application significantly (${\alpha}$ = 0.05) reduced the severity of disease with highest reduction (75%) recorded in treatments receiving 120 g of silica gel. SEM/EDX observations demonstrated a significant difference in weight concentration of silicon in silica cells on the leaf epidermis between silicon treated (25.79%) and non treated plants (7.87%) indicating that Si-fertilization resulted in higher deposition of Si in silica cells in comparison with non-treated plants. Application of silicon also led to a significant increase in Si contents of leaves. Contrast procedures indicated higher efficiency of silica gel in comparison to sodium silicate in almost all parameters assessed. The results suggest that mitigated levels of disease were associated with silicification and fortification of leaf epidermal cells through silicon fertilization.

Performance Evaluation on Blast-resistant of Gastight Door using Numerical Simulation (수치해석을 활용한 가스차단문의 폭발압력저항 성능평가)

  • Shin, Baegeun;Kim, Jiyu;Kim, Euisoo
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.1
    • /
    • pp.27-33
    • /
    • 2022
  • As the scale of explosions diversifies along with the expansion of gas handling and storage facilities, studies on explosion-proof facilities in preparation for accidents is being actively conducted. The gastight door blocks the expansion pressure caused by blast waves or internal fires, and at the same time protects the personnel and equipment inside. For gastight doors, the regulations related to explosion-proof design are not clearly presented, and studies on the explosion pressure resistance performance evaluation of the facility are insufficient. In this study, the gastight door was modeled in a 3D shape with reference to the regulation ASTM regarding the gastight door standard. Afterwards, evaluation for blast-resistant performance of gastight door using Numerical simulation was evaluated by using ANSYS Explicit Dynamics to compare the deformation.

A Study of Choosing Efficient Discriminative Seeds for Oligonucleotide Design (올리고뉴클레오타이드 제작을 위해 효율적이고 차별적인 시드를 고르는 방법에 대한 고찰)

  • Chung, Won-Hyong;Park, Seong-Bae
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Oligonucleotide design is known as a time-consuming work in Bioinformatics. In order to accelerate the oligonucleotide design process, one of the most widely used approaches is the prescreening unreliable regions using hashing(or seeding) method represented by BLAST. Since the seeding is originally proposed to increase the sensitivity for local alignment, the specificity should be considered as well as the sensitivity for the oligonucleotide design problem. However, a measure of evaluating the seeds regarding how adequate and efficient they are in the oligo design is not yet proposed. we propose a novel measure of evaluating the seeding algorithms based on the discriminability and the efficiency. By the proposed measure, five well-known seeding algorithms are examined. The spaced seed is recorded as the best efficient discriminative seed for oligo design.