• 제목/요약/키워드: Blank holding force

검색결과 96건 처리시간 0.027초

AZ31B 마그네슘 합금판재의 온간 성형한계도 및 스프링백 특성 시험 (Experiments for Forming Limit Diagram and Springback Characteristics of AZ31B Magnesium Alloy Sheet at Elevated Temperature)

  • 김헌영;최선철;이한수;김형종;이경택
    • 소성∙가공
    • /
    • 제16권5호통권95호
    • /
    • pp.364-369
    • /
    • 2007
  • The effect of temperature on the forming limit diagram was investigated for AZ31B magnesium alloy sheet through the limit dome height test in the range from room temperature to $300^{\circ}C$. The formability of AZ31B sheet was improved significantly according to the increasing temperature. Also we studied the springback characteristics through the 2D draw bending test with different blank holding forces at elevated temperatures. Springback quantity was considerably reduced as temperature went up. The blank holding force in the range used, however, had little influence on springback. Experimental results obtained in this study may provide a material database for AZ31B sheet.

금형의 온도와 처리 상태에 따른 판재의 마찰특성 (Friction characteristics of sheets for the Die Temperature and the Treating Conditions)

  • 송광헌;이재동;최이천;서대교
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.245-251
    • /
    • 1999
  • In this study, the experimental considerations of the friction factors are presented in a few cases. The friction factors in the cases of, first, the drawing quality material, SPC3C through the non-coated die of base material. GC30, secondly, SPCC through the Cr-coated GC30 die, and lastly. SPCC through the TD heat treated STD11 die, are measured experimentally both for the increasing die temperature and the blank holding forces. The results show no considerable variations of the value of friction coefficients according to the change of both the die temperature and the die treating conditions.

  • PDF

프론트필러의 핫스템핑 공정설계를 위한 블랭크형상의 최적화 연구 (Blank Shape Design Process for a Hot Stamped Front Pillar and its Experimental Verification)

  • 김지태;김병민;강충길
    • 소성∙가공
    • /
    • 제21권3호
    • /
    • pp.186-194
    • /
    • 2012
  • Hot stamping is a forming method that offers various advantages such as superior mechanical properties, good formability, and very small springback. However, relatively large-sized parts, such as front pillars, exhibit poor formability when hot stamped due to the limited material flow and thickness reduction imparted by the process. This reduction in thickness can also lead to cracks. One of the reasons is the relatively high friction between the sheet and the die. In this study, in order to obtain the optimal conditions for hot stamping of front pillars, various process parameters were studied and analyzed using the sheet forming software, J-STAMP. The effects of various parameters such as the die structure, blank shape, blank holding force, punch speed, clearance(upper and lower dies) and distance block were analyzed and compared.

고강도 강판 성형 공정의 스프링백 제어 (Springback Control in the Forming Processes for High-Strength Steel Sheets)

  • 양우열;이승열;금영탁;황진영;윤치상;신철수;조원석
    • 소성∙가공
    • /
    • 제12권8호
    • /
    • pp.718-723
    • /
    • 2003
  • Tn order to develop springback control technology for high-strength steel sheets, several studies have been conducted: dome stretching test, stepped s-rail forming and springback measurement, and optimally shaped initial blank design. First, to find out the formability of TRIP60, dome stretching test was performed. Next, the stepped s-rail die, which was designed to form a channel type panel with large twist and wall curl, was manufactured and used to evaluate the effect of controlling forming variables, such as blank holding force and flange amount on the springback. Furthermore, new measurement method of the springback was introduced to define wall curl and twist in geometrically complex panels. Finally, the optimally shaped initial blank was employed to verify one of the best ways to control the springback in channel type. high-strength sheet panels.

드로잉 공정에서 소재 유입에 영향을 미치는 인자에 관한 연구 (A study on the factors affecting to material inflow in the drawing process)

  • 이성민;신진희;김경아;이춘규
    • Design & Manufacturing
    • /
    • 제16권2호
    • /
    • pp.39-45
    • /
    • 2022
  • Sheet Metal Forming by Press Forming Process takes a lot of time and cost from mold design to manufacturing. Therefore, all of die-makers are continuously conducting research to reduce the number of mold processes or the size of blanks to reduce costs. In the case of Forming complex shapes such as automobile component, wrinkles and cracks occur, so draw beads are used. Draw beads play an important role in suppressing the inflow of materials and minimizing the size of blanks. Factors that affect material flow include draw bead, blank holding pressure, lubricant, and surface roughness of punch and die. Most of the factors affect friction. In this study, after classifying circular beads and rectangular beads in cylindrical drawing molds using the AutoForm analysis program, the factors affecting the material inflow were considered.

다이캐스팅 공정의 대체를 위한 마그네슘판재의 온간, 열간 ???K드로잉 성형성 평가 (The Drawbility Estimation in Warm and Rot Sheet Forming Process of Magnesium for Substitution of Die-casting Process)

  • 추동군;오세웅;이준희;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.407-410
    • /
    • 2005
  • The drawability of AZ31B magnesium sheet is estimated according to the variable temperatures (200, 250, 300, 350 and $400^{\circ}C$), forming speed (20, 50, 100 mm/min), thickness (0.8, 1.4 t), blank holding force (1.0, 1.4, 1.7kN). The deep drawing process (DDP) of circular cup is used in forming experiments. The results of deep drawing experiences show that the drawability is well at the range from 250 to $300^{\circ}C$, 50mm/min forming speed and 1.4kN blank holding force. The 0.8t magnesium sheets were deformed better than 1.4t. BHF was controlled in order to improve drawability and protect the change of cup thickness. When BHF was controlled, tearing and thickness change were decreased and LDR. was improved from 2.1 to 3.0.

  • PDF

딥드로잉공정에서의 재료 수율 향상에 관한 연구 (A Study on Improving The Coefficient of Utilization of Material in Deep Drawing Process)

  • 하종호;강형선;백호현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.509-516
    • /
    • 2009
  • This paper is the study on improving the coefficient of utilization of material in deep drawing process. Cylindrical cup drawing process is widely used in sheet metal forming process. The blank shape is one of the important things in sheet metal forming process. It is produced for the bridge of blank in a blanking process. The coefficient of utilization of material is much effected by this bridge of blank. This study offered a new process method to reduce the loss of material. The new blank shape offered and manufactured by new process method is investigated by a finite element method and the experiment. Then the wrinkling, the punch load, the thickness distribution is observed. This result is different from the result of circular blank process. And it is got that the Max strain, the wrinkle and the height of the wrinkle are effected by the holding force and the punch load. As a result, if the processing optimum condition is found, the loss of material will be reduced. It is necessary to research systematically about determining the optimum value of process variables.

레이저 용접 도어 인너의 성형해석과 금형설계 (Stamping Analyses of Laser Welded Door Inner and Die Design)

  • 김헌영;신용승;김관희;조원석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.65-71
    • /
    • 1997
  • Computer simulations and test trials are carried out to get the optimal conditions about the stamping die design of the tailor laser welded automotive door inner. Firstly, the stamping process including gravity deflection, bead calibration, binder wrap, forming and spring back, are analyzed by the computer simulation. The results of simulation shows good correspondance with those of test trial under the same conditions. The variables of parametric study which will be investigated in the simulation and test trials, are determined form the results of the first run. The formability under the various conditions is evaluated, which are the initial postion of blank, blank holding force, corner radius and the shape of drawbead. Finally, well controled sound product without fracture, wrinkling and excessive weldline movement is obtained.

  • PDF

고강도 강판 성형 공정의 스프링백 제어 (Springback Control in the Forming Processes for High-Strength Steel Sheets)

  • 양우열;이승열;금영탁;황진영;윤치상;신철수;조원석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 제4회 박판성형 심포지엄
    • /
    • pp.35-40
    • /
    • 2003
  • In order to develope springback control technology for high-strength steel sheets, some studies have been conducted: dome stretching test, stepped s-rail forming and springback measurement, and optimally shaped initial blank design. First, to find out the formability of TRIP60, dome stretching test was performed. Next the stepped s-rail die, which was designed to form a channel type panel with large twist and wall curl, was manufactured and used to know the effect of controlling forming variables, such as blank holding force and flange amount on the springback. Furthermore, new measurement method of the springback was introduced to define wall curl and twist in geometrically complex panels. Finally, the optimally shaped initial blank was employed to verify one of the best ways to control the springback in channel type, high strength sheet panels.

  • PDF

금속판재의 성형한계 및 디프드로잉 성형성의 실험적 평가에 관한 연구 (A Study on the Experimental Evaluation of the Forming Limit and Deep-Drawability of Sheet Metals)

  • 임재규;이상호;김형종
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.67-74
    • /
    • 1999
  • The mechanical properties including forming limit and deep-drawability of commercially-used sheet metals were experimentally estimated in this study. Uniaxial tensile test to obtain basic mechanical properties was carried out, followed by limiting dome height (LDH) test and forming limit diagram (FLD) test to quantitatively evaluate the sheet-formability. Deep drawing and reverse drawing tests were also performed to find out the critical values of the blank holding force and the gap between the die and the blank holder which enabled the deep drawing and reverse drawing of a successful cop without any wrinkle or fracture. The thickness of the cup wall along the rolling-, transeverse- and $45^{\circ}$-directions was measured and compared with one another. And the punch force-stroke curve and the critical punch force expected from the theory coincided with the experimental result very well for mild steel while not for aluminium alloy.

  • PDF