• Title/Summary/Keyword: Blade Number

Search Result 490, Processing Time 0.03 seconds

Performance Analysis of a Cross Flow Hydro Turbine by Runner Blade Number (소수력발전용 횡류수차의 러너 블레이드 깃수에 따른 성능해석)

  • Choi, Young-Do;Jin, Chang-Fu;Lim, Jae-Ik;Kim, You-Taek;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.698-706
    • /
    • 2008
  • Performance improvement of Small hydro turbine is a very important subject to solve in the stage of introduction and development of the turbine. Cross-flow hydro turbine should be also studied more in detail for the turbine performance in order to extend the sites of application. In order to improve the turbine performance, the effect of the turbine shape on the turbine performance should be examined. Therefore, the effect of runner blade number on the turbine performance is investigated by use of a commercial CFD code. The results show that runner blade number gives remarkable effect on the efficiency and output power of the turbine. Pressure on the surface of the runner blade changes considerably by the blade number at Stage 1, but relatively small change of velocity distribution occurs in the flow passage.

Cavitation Test at High Reynolds Number Using a Partial Propeller Blade Model (부분 프로펠러 날개 모형을 이용한 높은 레이놀즈 수에서의 공동시험)

  • Choi, Gil-Hwan;Chang, Bong-Jun;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.569-577
    • /
    • 2009
  • As the scale factor of model propellers utilized in cavitation test is about 40, it is difficult to find out practical countermeasures against the small area erosions on the blade tip region throughout model erosion tests. In this study, a partial propeller blade model was used for the observation of cavitation pattern for the eroded propeller. A partial propeller blade model was manufactured from 0.7R to tip with expanded profile and with adjustable device of angle of attack. Reynold's number of a partial propeller blade model is 7 times larger than that of a model propeller. Also, anti-singing edge and application of countermeasures to partial propeller blade model which produced in large scale can be more practical than a model propeller. For the observation of cavitation at high Reynold's number, high speed cavitation tunnel was used. To find out the most severe erosive blade position during a revolution, cavitation observation tests were carried out at 5 blade angle positions.

Two-Dimensional Moving Blade Row Interactions in a Stratospheric Airship Contra-Rotating Open Propeller Configuration

  • Tang, Zhihao;Liu, Peiqing;Guo, Hao;Yan, Jie;Li, Guangchao
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.500-509
    • /
    • 2015
  • The numerical simulation of two-dimensional moving blade row interactions is conducted by CFD means to investigate the interactions between the front and rear propeller in a stratospheric airship contra-rotating open propeller configuration caused by different rotational speeds. The rotational speed is a main factor to affect the propeller Reynolds number which impact the aerodynamic performance of blade rows significantly. This effect works until the Reynolds number reaches a high enough value beyond which the coefficients become independent. Additionally, the interference on the blade row has been revealed by the investigation. The front blade row moves in the induced-velocity field generated by the rear blade row and the aerodynamic coefficients are influenced when the rear blade row has fast RPMs. The rear blade row moving behind the front one is affected directly by the wake and eddies generated by the front blade row. The aerodynamic coefficients reduce when the front blade row has slow RPMs while increase when the front blade row moves faster than itself. But overall, the interference on the front blade row due to the rear blade row is slight and the interference on the rear blade row due to the front blade row is much more significant.

A Numerical Study on Aerodynamic Performance by the Blade Mach Number of the Centrifugal Compressor (원심 압축기의 임펠러 마하수에 따른 공력성능 특성에 관한 수치해석적 연구)

  • Heo, Won-Seok;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.56-61
    • /
    • 2015
  • It is important requirement to properly evaluate the aerodynamic performance and characteristics during preliminary design of a centrifugal compressor. In this study the centrifugal compressor was calculated for variations of mass flow and blade Mach number by means of single passage steady state. A lot of quantitative performance values were obtained and through the obtained values the aerodynamic performance characteristics of designed impeller and vaned diffuser were investigated. The results were classified by blade Mach number to analyze characteristics and the aerodynamic performance was examined at choke of impeller, diffuser and separation of diffuser.

Design for a circular arc shaped multi-blade windmill (원호형상의 멀티 블레이드를 가진 풍력터빈 설계)

  • Choo, Kwon Chul;Kim, Dong Keon;Yoon, Soon Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.390-395
    • /
    • 2004
  • The characteristics of the circular arc shaped multi-blade windmil are investigatedl. The prototypical windmill was tested in the laboratory at wind tunnel speeds of 5.5, 9.4m/s. and the model windmill was also tested in the laboratory, The power and torque coefficients were studied as functions of the blade section, the aspect ratio for blade diameter and windmill radius(M = 0.3, 0.5, 0.7), the number of blades and finally the tip-speed ratio. The analysis of the experimental results for the model windmill showed that there is the highest revolutions per minute(R.P.M) at the circular arc shaped multi-blade windmill having the blade number 10, aspect ratio(M = 0.7). and the results for the prototypical windmill showed that the power coefficient increased to a maximum value and then decreased again with an increase in the tip speed ratio, while the torque coefficient decreased directly with an increase in the tip speed ratio Finally, the experimental results were compared with the Savonius blade. the maximum power coefficient for the arc shaped blade was greater than for the Savonius blade and occured at a lower tip speed ratio.

  • PDF

Centrifugal Impeller Blade Shape Optimization Through Numerical Modeling

  • Bellary, Sayed Ahmed Imran;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.313-324
    • /
    • 2016
  • Surrogate model based shape optimization methodology to enhance performance of a centrifugal pump has been implemented in this work. Design variables, such as blade number and blade angles defining the pump impeller blade shape were selected and a three-level full factorial design approach was used for efficiency enhancement. A three-dimensional simulation using Reynolds-averaged Navier Stokes (RANS) equations for the performance analysis was carried out after designing the geometries of the impellers at the design points. Standard $k-{\varepsilon}$ turbulence model was used for steady incompressible flow simulations. The optimized impeller incurred lower losses by shifting the trailing edge towards the impeller pressure side. It is observed that the surrogates are problem dependent and most accurate surrogate does not deliver the best design always.

The Variation of Leaf Form of Natural Populations of Quercus variabilis in Korea (굴참나무 천연집단(天然集團)의 엽형(葉型) 변이(變異))

  • Song, Jeong-Ho;Park, Mun-Han;Moon, Heung-Kyu;Han, Sang-Urk;Yi, Jae-Seon
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.5
    • /
    • pp.666-676
    • /
    • 2000
  • For the study of morphological variation of Q. variabilis natural population in Korea, 19 populations were selected through the country in considering latitude, longitude, and geographical characters. Thirty trees were randomly selected from each population and 60 mature leaves were sampled from each tree. Four characters (leaf blade length, maximum blade width, petiole length, and vein number) were measured, and their ratios (the ratio of blade length to maximum blade width, the ratio of blade length to petiole length, the ratio of petiole length to vein number, upper 1/3 blade width to maximum blade width, and upper 1/3 blade width to lower 1/3 blade width) were calculated. 1. Analysis of variance for all leaf characters were significantly different among populations and among individuals within population. Contributions of variance among individuals within population in all the characters were higher than those among populations. Therefore, selection of plus trees may be preferable to desirable populations for breeding program of Q. variabilis. 2. Among principal component analysis for leaf characters, primary 2 principal components appeared to be major variables for leaf form of Q. variabilis because of the loading contribution of 80.5%. The first contribution component was petiole length/vein number and petiole length ; the second one was upper 1/3 blade width/maximum blade width, upper blade width/lower 1/3 blade width and vein number, respectively. 3. Latitude was positively correlated with blade length/maximum blade width and blade length/petiole length, but negatively correlated with petiole length/vein number, upper 1/3 blade width/maximum blade width, upper 1/3 blade width/lower 1/3 blade width, petiole length, and vein number. But, for longitude and altitude the former two traits and the later five traits exhibited the negative and positive correlation, respectively. 4. Cluster analysis using complete linkage method for leaf characters showed two groups to Euclidean distance 1.6. They were group I of population 1. 4, 5, and 13 and group II of population 2, 3, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, and 19. However, group II was divided again to Euclidean distance 1.3, that is a group including population 3, 7, 10, 14, 15, and 17(group II-1) and the other group comprising population 2, 6, 8, 9, 11, 12, 16, 18, and 19(group II-2). This cluster could be mainly observed due to difference among population in aspect (group I : NE, group II-1 : SE, and group II-2 : SW).

  • PDF

Numerical Study on the Effects of Combination of Blade Number for Shaft Forces and Moments of Contra-Rotating Propeller (상반회전 프로펠러의 날개수 조합에 따른 축기진력 연구)

  • Paik, Kwang-Jun;Lee, Jinsuk;Lee, Taegu;Hoshino, Tetsuji;Park, Hyung-Gil;Seo, Jongsoo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.282-290
    • /
    • 2013
  • The effects of the combination of blade number for forward and after propeller on the propeller shaft forces of a contra-rotating propeller (CRP) system are presented in the paper. The research is performed through the numerical simulations based on the Reynolds-Averaged Navier-Stokes equations (RANS). The simulation results of the present method in open water condition are validated comparing with the experimental data as well as the other numerical simulation results based on the potential method for 4-0-4 CRP (3686+3687A) and 4-0-5 CRP (3686+3849) of DTNSRDC. Two sets of CRP are designed and simulated to study the effect of the combination of blade number in behind-hull condition. One set consists of 3-blade and 4-blade, while the other is 4-blade and 4-blade. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. From the simulation results, the fluctuations of axial force and moment are dominant in the case of same blade numbers for forward and after propellers, whereas the fluctuations of horizontal and vertical forces and moments are very large in the case of different blade numbers.

Improvement of Aerodynamic Efficiency of Supersonic Stage by the Modification of Hub Flowpath Shape (허브면 형상의 변경을 통한 초음속 압축단의 공력효율 개선)

  • Park, Kicheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.227-233
    • /
    • 2002
  • It is common for highly loaded supersonic stage to have very high relative inlet Mach number. To get this level of inlet Mach number, rotor blade outer diameter or rotational speed should be increased. In the case of commercial turbo-fan engine, it is preferred to make the rotor blade outer diameter large than increasing the rotational speed. But, for multi-stage fan of military engines, overall diameter is often restricted and they are apt to increase the rotational speed. With high rotational speed, relative inlet Mach number is likely to be well supersonic over the entire rotor blade span and the characteristic of the stage is affected with meridional shape of the stage, especially at near hub or tip. In this paper, the aerodynamic performance of two different hub surface shape is compared and it's merit and demerits were discussed.

  • PDF

Effect of Blade Number Variations on Performance of Micro Gravitational Vortex Turbine in Free Water Surface (자유수면에서 블레이드 수 변화가 마이크로 중력식 와류 수차 성능에 미치는 영향)

  • Jong-Woo Kim;In-Ho Choi;Gi-Soo Chung
    • Journal of Wetlands Research
    • /
    • v.25 no.3
    • /
    • pp.176-183
    • /
    • 2023
  • The aim of this paper is to understand the blade number effect on vortex turbine performance in the cylindrical vortex chamber below the free water surface. Using the same blade profile, the performance of gravitational vortex turbine is tested each with 2, 3, 4, 5 and 6 blades installed at the relative vortex height (y/hv) ranging from 0.065 to 0.417. The obtained results indicate that the rotation, voltage, current and power increase in the relative vortex height of 0.065 and 0.111 when increasing the number of blades at flow velocity of less than 0.7 m/s. The average power of the 5-blade turbine is more than others. The performance of the 4-blade turbine with a 130 mm diameter installed near the orifice is higher than that of the same number of blades with a 220 mm diameter in the vortex chamber.