• Title/Summary/Keyword: Blade Angle

Search Result 600, Processing Time 0.023 seconds

A Study of Vertical Axis Wind Turbine (수직축 풍력터빈에 관한 연구)

  • park, Jung-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.389-395
    • /
    • 2017
  • This paper showed the difference in the optimum conditions by using the ANSYS CFX simulation program with the changes of the main-blade angle and sub-blade angle. Main-blade Shape 4,which had angle $45^{\circ}$ while other Shapes with angle $0^{\circ}$, was increased to 157.2[%] to 263.2[%] in the power and was increased to 110[%] to 250[%] in the power coefficient. Moreover, when the Shape 5 Fin length of main-blade doubled, the power was 70.8[%] when compared with Shape 1 and 27.5[%] with shape 4.If the main-blade geometry equals shape 1 in the case structure, The power of Case1 was increased to 13.3[%] when compared with Case2. Also, the power coefficient was increased to 15.4[%]. When sub-blade angle was $45^{\circ}$, main-blade was better than the Fin type than the Bended type. The power of Case4 was increased to 47[%] when compared with Csae1 and increased to 13.6[%] with Case 3. Also, the power coefficient was 46.7[%] when compared with Case 1 and 15.8[%] with Case 3.

Effect of pitch angle and blade length on an axial flow fan performance (피치각과 날개 길이 변화에 따른 축류팬의 성능 및 소음 특성에 관한 실험적 연구)

  • Jeon, Sung-Taek;Cho, Jin-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3170-3176
    • /
    • 2013
  • In this study, the performance of an impeller according to blade length and pitch angle was studied experimentally by building a variable pitch impeller while changing blade length to review the effect of blade length and pitch angle on a fan's performance and sound characteristics. The pitch angle was changed in six steps from $20^{\circ}{\sim}45^{\circ}$ at intervals of $5^{\circ}$ while the blade lengths were changed 80 mm, 90 mm, 100 mm, 110 mm and 120 mm with an identical airfoil shape while carrying out the experiment.

Evaluation of Cutter Orientations in 5-Axis High Speed Milling of Turbine Blade (터빈블레이드의 5축 고속가공에서 최적가공경로의 선정)

  • Lim T. S.;Lee C. M.;Kim S. W.;Lee D. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.53-60
    • /
    • 2002
  • Recently, the development of aerospace and automobile industries brought new technological challenges, related to the growing complexity of products and new geometry models. High speed machining using 5-Axis milling machine is widely used for 3D sculptured surface parts. 5-axis milling of turbine blade generates the vibration, deflection and twisting caused from thin and cantilever shape. So, the surface roughness and the waviness of workpiece are not good. In this paper, The effects of cutter orientation and lead/tilt angle in 5-Axis high speed ball end-milling of turbine blade were investigated to improve the geometric accuracy and surface integrity. The experiments were performed at lead/tilt angle $15^{\circ}$ of workpiece with four cutter directions such as horizontal outward, horizontal inward, vertical outward, and vertical inward. Workpiece deflection, surface roughness and machined surface were measured with various cutter orientations such as cutting direction, and lead/tilt angle. The results show that when 5-axis machining of turbine blade, the best cutting strategy is horizontal inward direction with tilt angle. The results show that when 5-axis machining of turbine blade, the best cutting strategy is horizontal inward direction with tilt angle.

  • PDF

Study on the Analysis of Structural Dynamic Characteristics and Modal Test of Unmanned Helicopter Rotor Blades (무인헬리콥터 로터 블레이드의 구조적 진동특성 분석 및 시험에 관한 연구)

  • 정경렬;이종범;한성호;최길봉
    • Journal of KSNVE
    • /
    • v.5 no.2
    • /
    • pp.215-224
    • /
    • 1995
  • In this paper, the three-dimensional finite element model is established to investigate the structural dynamic characteristics of rotor blade using a finite element analysis. Six natural frequencies and mode shapes are calculated by computer simulation. The first three flapping modal frequencies, the first two lead-lag modal frequencies, and the first feathering modal frequency are validated through comparison with the modal test results of the fixed rotor blade. The computer simulation results are found in good agreement with experimentally measured natural frequencies. The important results are obtained as follows: (1) Natural frequencies are changed due to the variation of rotational speed and fiber angle of rotor blade, (2) Weak coupling between flapping mode shape and lead-lag mode shape are detected, (3) Centrifugal force has more effect on flapping modal frequency than lead-lag modal frequency.

  • PDF

Analysis of Two-Dimensional Flow around Blades with Large Deflection in Axial Turbomachine (전향도가 큰 축류터보기계의 블레이드 주위의 유동해석)

  • 원승호;손병진;최상경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.229-240
    • /
    • 1991
  • The large camber angle theory of turbomachine blade of compressor has been developed recently for the two-dimensional flow by Hawthorn, et al. However, in the above theory it was assumed that the fluid was incompressible and inviscid, and the blades had no thickness. In this study, the flow in a blade cascade being mounted in parallel fashion with blade of arbitrary thickness is studied in order to determine the effects of the camber angle on the performance characteristic of the blade section under the consideration of compressibility and viscosity of fluid. The panel method is used for potential flow analysis. The flow in the boundary-layer is obtained by solving the integral boundary-layer structure through the laminar, transitional , and turbulent flow using the pressure field determined from the potential flow. And then the viscous-inviscid interaction scheme is used for interaction of these two flows. For the determination of the variation in the outlet fluid angle influenced by deviation in cascade flow, the superposition method which is used for single foil is introduced in this analysis. By the introduction of this method, the effects of the deviation on outlet fluid angle and the resulting fluid angle are made to adjust for oneself through the calculation. As the result of this study, the blade of large camber angle, large incidence angle, large pitch-chord ratio has large viscous and compressible effect than those of small camber angle. Lift force increase as camber angle increases, but above 60.deg. of camber angle, lift force decrease as camber angle increases. But drag force increases linearly with camber angle increases in the entire region.

A Study on Design of Wind Turbine Blade and Aerodynamic Analysis (수평축 풍력터빈 블레이드의 공력해석 및 설계에 관한 연구)

  • Kim, J.H.;Kim, B.S.;Yoon, S.H.;Lee, Y.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.631-638
    • /
    • 2003
  • The wind turbine blade is the equipment converted wind into electric energy. The effect of the blade has influence of the output power and efficiency of wind turbine. The design of blade is considered of lift-to-drag ratio, structure, a condition of process of manufacture and stable maximum lift coefficient, etc. This study is used the simplified method for design of the aerodynamic blade and aerodynamic analysis used blade element method. This process is programed by delphi-language. The program has any input values such as tip speed ratio, blade length, hub length, a section of shape and max lift-to-drag ratio. The program displays chord length and twist angle by input value and analyzes performance of the blade.

  • PDF

Experimental Investigation on the Hydraulic Performance of the Regenerative Pump According to the Blade Angle (재생 펌프의 날개 각도에 따른 성능 변화에 관한 실험적 연구)

  • Yoo, Il Su;Choi, Won Chul;Park, Mu Ryong;Lee, Gong Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.5
    • /
    • pp.5-10
    • /
    • 2013
  • The regenerative pump is a kind of turbomachine which is capable of developing high pressure rise at relatively lower flow rates compared to the centrifugal and axial pumps. Although the efficiency of regenerative pumps is much lower than other turbomachines, still they have been widely used in many industrial applications for working at low specific speeds. There are some theoretical models to analysis the pump performance, however, the effect of the blade angle on the pump performance has not been covered in any model to date. In the present study, experimental study on the regenerative pump performance according to the impeller blade angle and its shape has been carried out. The straight radial blades with forward, backward and chevron blades which have inclined angles of $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ were tested. The pump performance characteristics as the pressure head, efficiency were obtained depending on the flow rate for every impeller, and their results, expressed in appropriate non-dimensional coefficients, were compared and analysed in detail. From the experimental results, it was found that the pressure head and the efficiency depend strongly on the blade angles as well as the blade type. These experimental data has made it possible to better understand the effects of the blade angle on the pump performance, and widen the applicability of the current performance analysis and design models with including the effect of blade angles.

A Study on Air Flow Analysis in Vertical-axis Wind Turbine (수직축 풍력터빈의 유동해석에 관한 연구)

  • Lee, Ki-Seon;Park, Jung-Cheul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.158-162
    • /
    • 2017
  • This paper did basic study on the vertical-axis wind turbine. Namely, This paper was try to find the optimum conditions by using the ANSYS CFX simulation program through the changes of the main-blade angle and sub-blade angle. Main-blade Shape #4 angle $45^{\circ}$ compared to others Shape angle $0^{\circ}$ was increased by 157.2[%] to 263.2[%] in the power output and was increased by 110[%] to 250[%] in the power coefficient. Also, when the Shape #5 Fin length of main-blade doubles, because the power output was 70.8[%] compared to Shape #1 and 27.5[%] compared to Shape #4, and the power coefficient was 60[%] compared to Shape #1 and 28.6[%] compared to Shape #4, the power output and the power efficiency were rather reduced. The output current of Shape #4 was increased 109.9[%] compared to Shape #1 and increased 250[%] compared to Shape #5, and The output voltage of Shape #4 was increased 22.5[%] compared to Shape #1 and increased 3.7[%] compared to Shape #4.

The Effects of Doctoring Process in Gravure Off-set Printing on Patterning of Electrodes with Ag Ink (은 잉크를 이용한 그라비아 오프셋의 전극인쇄에서 닥터링 공정의 영향)

  • Choi, Ki Seong;Park, Jin Seok;Song, Chung-Kun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.462-467
    • /
    • 2013
  • In this paper, we analyzed the effects of doctoring process on the patterns of Ag ink in gravure off-set printing. The parameters of doctoring process were the angle and the pressure, which was represented by the depth of blade movement to the gravure roll, of doctor blade to the surface of gravure roll, and the angle of patterns engraved on the gravure roll to the doctor blade moving direction. The proper parameters were extracted for the fine patterns and they were 15 mm for the pressure, $60^{\circ}$ for the blade angle. And the angle of patterns with respect to the blade movement should be less than $40^{\circ}$ for the best results. The gravure off-set printing with the above parameters was carried out to print gate electrodes and scan bus lines of OTFT-backplane for e-paper. The line width of $50{\mu}m$ was successfully obtained. The thickness of electrodes was $2.5{\mu}m$ and the surface roughness was $0.65{\mu}m$ and the sheet resistance was $15.8{\Omega}/{\Box}$.

Stability Analysis of a Wind Turbine Blade Considering Wind Force and Variation of Pitch Angle (풍 하중과 Pitch각 변화에 따른 풍력 터빈 블레이드의 안정성 해석)

  • Kwon, Seung Min;Kang, Moon Jeong;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1164-1171
    • /
    • 2012
  • Recently, researches related to the green energy generation systems have increased significantly. Among them wind turbines are the most spread practical green energy generation systems. In order to enhance the power generation capacity of the wind turbine blade, the length of wind turbine blade has increased. It might cause undesirable excessive dynamic loads. Therefore dynamic characteristics of a wind turbine blade system should be identified for a safe design of the system. In this study, the equations of motion of a wind turbine blade system undergoing gravitational force are derived considering wind force and pitch angle. Effects of wind speed, variation of pitch angle of the wind turbine blade, rotating speed, and the blade length on its stability characteristics are investigated.