• 제목/요약/키워드: Bivariate censored survival data

검색결과 6건 처리시간 0.019초

Estimation of Treatment Effect for Bivariate Censored Survival Data

  • Ahn, Choon-Mo;Park, Sang-Gue
    • Communications for Statistical Applications and Methods
    • /
    • 제10권3호
    • /
    • pp.1017-1024
    • /
    • 2003
  • An estimation problem of treatment effect for bivariate censored survival data is considered under location shift model between two sample. The proposed estimator is very intuitive and can be obtained in a closed form. Asymptotic results of the proposed estimator are discussed and simulation studies are performed to show the strength of the proposed estimator.

The Bivariate Kumaraswamy Weibull regression model: a complete classical and Bayesian analysis

  • Fachini-Gomes, Juliana B.;Ortega, Edwin M.M.;Cordeiro, Gauss M.;Suzuki, Adriano K.
    • Communications for Statistical Applications and Methods
    • /
    • 제25권5호
    • /
    • pp.523-544
    • /
    • 2018
  • Bivariate distributions play a fundamental role in survival and reliability studies. We consider a regression model for bivariate survival times under right-censored based on the bivariate Kumaraswamy Weibull (Cordeiro et al., Journal of the Franklin Institute, 347, 1399-1429, 2010) distribution to model the dependence of bivariate survival data. We describe some structural properties of the marginal distributions. The method of maximum likelihood and a Bayesian procedure are adopted to estimate the model parameters. We use diagnostic measures based on the local influence and Bayesian case influence diagnostics to detect influential observations in the new model. We also show that the estimates in the bivariate Kumaraswamy Weibull regression model are robust to deal with the presence of outliers in the data. In addition, we use some measures of goodness-of-fit to evaluate the bivariate Kumaraswamy Weibull regression model. The methodology is illustrated by means of a real lifetime data set for kidney patients.

Asymptotic Normality of PL estimator for interval censored bivariate life-times

  • Kang, Shin-Soo
    • Communications for Statistical Applications and Methods
    • /
    • 제7권1호
    • /
    • pp.245-256
    • /
    • 2000
  • Large sample properties of Life-Table estimator are discussed for interval censored bivariate survival data. We restrict out attention to the situation where response times within pairs are not distinguishable and the univariate survival distribution is the same for any individual within any pair.

  • PDF

Estimation of Bivariate Survival Function for Possibly Censored Data

  • Park Hyo-Il;Na Jong-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • 제12권3호
    • /
    • pp.783-795
    • /
    • 2005
  • We consider to obtain an estimate of bivariate survival function for the right censored data with the assumption that the two components of censoring vector are independent. The estimate is derived from an ad hoc approach based on the representation of survival function. Then the resulting estimate can be considered as an extension of the Susarla- Van Ryzin estimate to the bivariate data. Also we show the consistency and weak convergence for the proposed estimate. Finally we compare our estimate with Dabrowska's estimate with an example and discuss some properties of our estimate with brief comment on the extension to the multivariate case.

INDEPENDENCE TEST FOR BIVARIATE CENSORED DATA UNDER UNIVARIATE CENSORSHIP

  • Kim, Jin-Heum;Cai, Jian-Wen
    • Journal of the Korean Statistical Society
    • /
    • 제32권2호
    • /
    • pp.163-174
    • /
    • 2003
  • We propose a test for independence of bivariate censored data under univariate censorship. To do this, we first introduce a process defined by the difference between bivariate survival function estimator proposed by Lin and Ying (1993) and the product of the product-limit estimators (Kaplan and Meier, 1958) for the marginal survival functions, and derive its asymptotic properties under the null hypothesis of independence. We propose a Cramer-von Mises-type test procedure based on the process . We conduct simulation studies to investigate the finite-sample performance of the proposed test and illustrate the proposed test with a real example.

Dimension reduction for right-censored survival regression: transformation approach

  • Yoo, Jae Keun;Kim, Sung-Jin;Seo, Bi-Seul;Shin, Hyejung;Sim, Su-Ah
    • Communications for Statistical Applications and Methods
    • /
    • 제23권3호
    • /
    • pp.259-268
    • /
    • 2016
  • High-dimensional survival data with large numbers of predictors has become more common. The analysis of such data can be facilitated if the dimensions of predictors are adequately reduced. Recent studies show that a method called sliced inverse regression (SIR) is an effective dimension reduction tool in high-dimensional survival regression. However, it faces incapability in implementation due to a double categorization procedure. This problem can be overcome in the right-censoring type by transforming the observed survival time and censoring status into a single variable. This provides more flexibility in the categorization, so the applicability of SIR can be enhanced. Numerical studies show that the proposed transforming approach is equally good to (or even better) than the usual SIR application in both balanced and highly-unbalanced censoring status. The real data example also confirms its practical usefulness, so the proposed approach should be an effective and valuable addition to usual statistical practitioners.