• Title/Summary/Keyword: Bit error probability (BEP)

Search Result 16, Processing Time 0.019 seconds

Exact Bit Error Probability of Orthogonal Space-Time Block Codes with Quadrature Amplitude Modulation

  • Kim, Sang-Hyo;Yang, Jae-Dong;No, Jong-Seon
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.253-257
    • /
    • 2008
  • In this paper, the performance of generic orthogonal space-time block codes (OSTBCs) introduced by Alamouti [2], Tarokh [3], and Su and Xia [11] is analyzed. We first define one-dimensional component symbol error function (ODSEF) from the exact expression of the pairwise error probability of an OSTBC. Utilizing the ODSEF and the bit error probability (BEP) expression for quadrature amplitude modulation (QAM) introduced by Cho and Yoon [9], the exact closed-form expressions for the BEP of linear OSTBCs with QAM in quasi-static Rayleigh fading channel are derived. We also derive the exact closed-form of the BEP for some OSTBCs which have at least one message symbol transmitted with unequal power via all transmit antennas.

The Mutual Information for Bit-Linear Linear-Dispersion Codes (BLLD 부호의 Mutual Information)

  • Jin, Xiang-Lan;Yang, Jae-Dong;Song, Kyoung-Young;No, Jong-Seon;Shin, Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.958-964
    • /
    • 2007
  • In this paper, we derive the relationship between the bit error probability (BEP) of maximum a posteriori (MAP) bit detection and the bit minimum mean square error (MMSE), that is, the BEP is greater than a quarter of the bit USE and less than a half of the bit MMSE. By using this result, the lower and upper bounds of the derivative of the mutual information are derived from the BEP and the lower and upper bounds are easily obtained in the multiple-input multiple-output (MIMO) communication systems with the bit-linear linear-dispersion (BLLD) codes in the Gaussian channel.

Performance Analysis of IDF Relaying M2M Cooperative Networks over N-Nakagami Fading Channels

  • Xu, Lingwei;Zhang, Hao;Gulliver, T. Aaron
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3983-4001
    • /
    • 2015
  • Exact average bit error probability (BEP) expressions for mobile-relay-based mobile-to-mobile (M2M) cooperative networks with incremental decode-and-forward (IDF) relaying over N-Nakagami fading channels are derived in this paper. The average BEP performance under different conditions is evaluated numerically to confirm the accuracy of the analysis. Results are presented which show that the fading coefficient, the number of cascaded components, the relative geometrical gain, and the power allocation parameter have a significant influence on the average BEP performance.

Performance Analysis of Multi-Hop Decode-and-Forward Relaying with Selection Combining

  • Bao, Vo Nguyen Quoe;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.616-623
    • /
    • 2010
  • In this paper, exact closed-form expressions for outage probability and bit error probability (BEP) are presented for multi-hop decode-and-forward (DF) relaying schemes in conjunction with cooperative diversity, in which selection combining technique is employed at each node. We have shown that the proposed protocol offers remarkable diversity advantage over direct transmission as well as the conventional DF relaying schemes with the same combining technique. We then investigate the system performance when different diversity schemes are employed. It has been observed that the system performance loss due to selection combining relative to maximal ratio combining is not significant. Simulations are performed to confirm our theoretical analysis.

Bit Error Probability of Noncoherent M-ary Orthogonal Modulation over Generalized Fading Channels

  • Simon, Marvin K.;Alouini, Mohamed-Slim
    • Journal of Communications and Networks
    • /
    • v.1 no.2
    • /
    • pp.111-117
    • /
    • 1999
  • Using a method recently reported in the literature for analyzing the bit error probability (BEP) performance of noncoherent Mary orthogonal signals with square-law combining in the presence of independent and identically distributed Nakagami-m faded paths, we are able to reformulate this method so as to apply to a generalized fading channel in which the fading in each path need not be identically distributed nor even distributed ac-cording to the same family of distribution. The method leads to exact expressions for the BEP in the form of a finite-range integral whose integrand involves the moment generating function of the combined signal-to-noise ratio and which can therefore be readily evaluated numerically. The mathematical formalism is illustrated by applying the method to some selected numerical examples of interest showing the impact of the multipath intensity profile (MIP) as well as the fading correlation profile (FCP) on the BEP performance of M-ary orthogonal signal over Nakagami-m fading channels. Thses numerical results show that both MIP and FCP induce a non-negligible degradition in the BEP and have therefore to be taken into account for the accurate prediction of the performance of such systems.

  • PDF

BER Performance Analysis of Linear Orthogonal Space-Time Block Codes with Quadrature Amplitude Modulation in Quasi Static Rayleigh Fading Channel (QAM 변조방식을 갖는 선형 직교 시공간 블록 부호의 준정지 레일리 페이딩 채널에서의 비트 오율 성능 분석)

  • Kim Sang-Hyo;Yang Jae-Dong;No Jong-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6C
    • /
    • pp.575-581
    • /
    • 2006
  • In this paper, we first define one-dimensional component symbol error function (ODSEF) from the exact expression of the pairwise error probability of orthogonal space-time block codes (OSTBC). Using the ODSEF and the general bit error probability (BEP) expression for quadrature amplitude modulation (QAM) introduced by Cho and Yoon, the exact closed form expressions for the BEP of linear OSTBCs with QAM in slow-varying Rayleigh fading channel are derived.

On the Performance of Incremental Opportunistic Relaying with Differential Modulation over Rayleigh Fading Channels

  • Bao, Vo Nguyen Quoc;Kong, Hyung-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.731-742
    • /
    • 2010
  • We propose an incremental relaying protocol in conjunction with opportunistic communication for differential modulation with an aim to make efficient use of the degrees of freedom of the channels by exploiting a imited feedback signal from the destination. In particular, whenever the direct link from the source to the destination is not favorable to decoding, the destination will request the help from the opportunistic relay (if any). The performance of the proposed system is derived in terms of average bit error probability and achievable spectral efficiency. The analytic results show that the system assisted by the opportunistic relaying can achieve full diversity at low SNR regime and exhibits a 30㏈ gain relative to direct transmission, assuming single-antenna terminals. We also determine the effect of power allocation on the bit error probability BEP) performance of our relaying scheme. We conclude with a discussion on the relationship between the given thresholds and channel resource savings. Monte-Carlo simulations are performed to verify the analysis.

Optimizations of Multi-hop Cooperative Molecular Communication in Cylindrical Anomalous-Diffusive Channel

  • Xuancheng Jin;Zhen Cheng;Zhian Ye;Weihua Gong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.1075-1089
    • /
    • 2024
  • In this paper, the optimizations of multi-hop cooperative molecular communication (CMC) system in cylindrical anomalous-diffusive channel in three-dimensional enviroment are investigated. First, we derive the performance of bit error probability (BEP) of CMC system under decode-and-forward relay strategy. Then for achieving minimum average BEP, the optimization variables are detection thresholds at cooperative nodes and destination node, and the corresponding optimization problem is formulated. Furthermore, we use conjugate gradient (CG) algorithm to solve this optimization problem to search optimal detection thresholds. The numerical results show the optimal detection thresholds can be obtained by CG algorithm, which has good convergence behaviors with fewer iterations to achieve minimized average BEP compared with gradient decent algorithm and Bisection method which are used in molecular communication.

Interference Analysis of Digital HD Radio System considering Angular Effect (각도 효과를 고려한 디지털 HD Radio 시스템에서의 간섭 분석)

  • Kim, Joo-Seok;Jung, Won-Ho;Lee, Yong-Tae;Baek, Myung-Sun;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.45-50
    • /
    • 2012
  • In the current wireless communication technology, the digital radio system replaces the analog radio broadcasting. Since the in-band digital radio systems are used in the existing analog radio frequency band, interference problems of digital radio are caused. It is important to effectively analyze the interference. In this paper, to analyze SINR and BEP (bit error probability) of digital radio system, we propose the analysis method considering angular effect. The angular effect means a method to analyze the interference when the receiver is located in different directions around the transmitter. These results are able to give basic information for the allocation of digital radio networks.

Optimizations for Mobile MIMO Relay Molecular Communication via Diffusion with Network Coding

  • Cheng, Zhen;Sun, Jie;Yan, Jun;Tu, Yuchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1373-1391
    • /
    • 2022
  • We investigate mobile multiple-input multiple-output (MIMO) molecular communication via diffusion (MCvD) system which is consisted of two source nodes, two destination nodes and one relay node in the mobile three-dimensional channel. First, the combinations of decode-and-forward (DF) relaying protocol and network coding (NC) scheme are implemented at relay node. The adaptive thresholds at relay node and destination nodes can be obtained by maximum a posteriori (MAP) probability detection method. Then the mathematical expressions of the average bit error probability (BEP) of this mobile MIMO MCvD system based on DF and NC scheme are derived. Furthermore, in order to minimize the average BEP, we establish the optimization problem with optimization variables which include the ratio of the number of emitted molecules at two source nodes and the initial position of relay node. We put forward an iterative scheme based on block coordinate descent algorithm which can be used to solve the optimization problem and get optimal values of the optimization variables simultaneously. Finally, the numerical results reveal that the proposed iterative method has good convergence behavior. The average BEP performance of this system can be improved by performing the joint optimizations.