• Title/Summary/Keyword: Bismuth치환 YIG

Search Result 2, Processing Time 0.016 seconds

Effect of Carrier Gas Flow Rate on Magnetic Properties of Bi:YIG Films Deposited with Aerosol Deposition Method (에어로졸성막법에 의해 제작된 Bi:YIG 막에 미치는 에어로졸유량의 영향)

  • Shin, Kwang-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.14-18
    • /
    • 2008
  • Bismuth-substituted yttrium iron garnet(Bi:YIG) films, which show excellent magnetic and magneto-optical properties as well as low optical losses by optimizing their deposition and post-annealing condition, have been attracting great attention in optical device research area. In this study, the Bi:YIG thick films were deposited with the aerosol deposition method for the final purpose of applying them to optical isolators. Since the aerosol deposition is based on the impact adhesion of sub-micrometer particles accelerated by a carrier gas to a substrate, the flow rate of carrier gas, which is in proportion to mechanically collision energy, should be treated as an important parameter. The Bi:YIG($Bi_{0.5}Y_{2.5}Fe_5O_{12}$) particles with $100{\sim}500$ nm in average diameter were carried and accelerated by nitrogen gas with the flow rate of 0.5 l/min${\sim}$10 l/min. The coercive force decreased from 51 Oe to 37 Oe exponentially with increasing gas flow rate. This is presumably due to the fact that the optimal collision energy results in reduction of impurity and pore, which makes the film to be soft magnetically. The saturation magnetization decreased due to crystallographical distortion of the film with increasing gas flow rate.

Aerosol Incident Angle Dependence of Optical and Magnetic Properties of Bi:YIG Films Deposited with Aerosol Deposition Method (에어로졸성막법으로 성막한 Bi:YIG 막의 광학적/자기적특성에 미치는 에어로졸 입사각도의 영향)

  • Shin, Kwang-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.9-13
    • /
    • 2008
  • Bismuth-substituted yttrium iron garnet($Bi_{0.5}Y_{2.5}Fe_5O_{12}$) films were deposited with the aerosol deposition method and their magnetic and optical properties were investigated as a function of the aerosol incident angle. The optical transmittance of Bi:YIG increased about 80% with increasing the aerosol incident angle from 0 degree to 30 degree, due to decrease of the defects which were formed from agglutinations of the Bi:YIG particles inside and/or surface of the film. The coercive force also decreased largely with increasing the aerosol incident angle due to the reduction of the collision energy between the particles and the substrate and the decrease of the defects.