• Title/Summary/Keyword: Bipolar LVDC distribution system

Search Result 9, Processing Time 0.026 seconds

Unbalancing Voltage Control of LVDC Bipolar Distribution System for High Power Quality (전력 품질 향상을 위한 LVDC 양극성 배전 시스템의 불평형 전압 제어)

  • Lee, Hee-Jun;Shin, Soo-Choel;Kang, Jin-Wook;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.486-496
    • /
    • 2016
  • The voltage unbalance of an LVDC bipolar distribution system was controlled for high power quality. Voltage unbalance may occur in a bipolar distribution system depending on the operation of the converter and load usage. Voltage unbalance can damage sensitive load and lead to converter accidents. The conditions that may cause voltage unbalance in a bipolar distribution system are as follows. First, three-level AC/DC converters in bipolar distribution systems can lead to voltage unbalance. Second, bipolar distribution systems can be at risk for voltage unbalance because of load usage. In this paper, the output DC link of a three-level AC/DC converter was analyzed for voltage unbalance, and the bipolar voltage was controlled with algorithms. In the case of additional voltage unbalance according to load usage, the bipolar voltage was controlled using the proposed converter. The proposed converter is a dual half-bridge converter, which was improved from the secondary circuit of a dual half-bridge converter. A control algorithm for bipolar voltage control without additional converters was proposed. The balancing control of the bipolar distribution system with distributed power was verified through experiments.

A Reliability Analysis in LVDC Distribution System Considering Power Quality (전력품질을 고려한 LVDC 배전계통의 신뢰도 분석)

  • Noh, Chul-Ho;Kim, Chung-Mo;Kim, Doo-Ung;Gwon, Gi-Hyeon;Oh, Yun-Sik;Han, Jun;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.54-61
    • /
    • 2015
  • Recently, DC-based power system is being paid attention as the solution for energy efficiency. As the example, HVDC (High Voltage DC) transmission system is utilized in the real power system. On the other hand, researches on LVDC (Low Voltage DC) distribution system, which are including digital loads, are not enough. In this paper, reliability in LVDC distribution system is analyzed according to the specific characteristics such as the arrangement of DC/DC converters and the number of poles. Furthermore, power quality is also taken account of since LVDC distribution system includes multiple sensitive loads and electric power converters. In order to achieve this, LVDC distribution systems are modeled using ElectroMagnetic Transient Program (EMTP) and both the minimal cut-set method and Customer Interruption Cost (CIC) are used in the reliability analysis.

Complementary Power Control of the Bipolar-type Low Voltage DC Distribution System

  • Byeon, Gilsung;Hwang, Chul-Sang;Jeon, Jin-Hong;Kim, Seul-Ki;Kim, Jong-Yul;Kim, Kisuk;Ko, Bokyung;Kim, Eung-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.786-794
    • /
    • 2015
  • In this paper, a new power control strategy for the bipolar-type low voltage direct current (LVDC) distribution system is being proposed. The dc distribution system is considered as an innovative system according to the increase of dc loads and dc output type distribution energy resources (DERs) such as photovoltaic (PV) systems and energy storage systems (ESS). Since the dc distribution system has many advantages such as feasible connection of DERs, reduction of conversion losses between dc output sources and loads, no reactive power issues, it is very suitable solution for new type buildings and residences interfaced with DERs and ESSs. In the bipolar-type, if it has each grid-interfaced converter, both sides (upper, lower-side) can be operated individually or collectively. A complementary power control strategy using two ESSs in both sides for effective and reliable operation is proposed in this paper. Detailed power control methods of the host controller and local controllers are described. To verify the performances of the proposed control strategy, simulation analysis using PSCAD/EMTDC is being performed where the results show that the proposed strategy provides efficient operations and can be applied to the bipolar-type dc distribution system.

Implementation of a Photovoltaic System Simulator for Interconnecting with Bipolar ±750V DC distribution Grid (바이폴 ±750 직류 배전망 연계용 태양광 발전 시뮬레이터 구현)

  • Kim, Tae-Hoon;Kim, Seok-Woong;Cho, Jin-Tae;Kim, Ju-Yong;Jung, Jae-Seung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1800-1805
    • /
    • 2016
  • The micro-grid designed as bipolar ${\pm}750V$ low-voltage DC power distribution system demonstrated by KEPRI, demands interconnection of a number of small decentralized power source including variable renewable generator. Therefore, variable researches for the influence of interconnection with the bipolar typed DC grid and these variable power sources are required for superior quality of power distribution. Renewable power generation simulators for the bipolar ${\pm}750V$ low-voltage DC power distribution system are necessary for such researches. In this paper, we carry out a research on the photovoltaic simulator that be actually able to interconnect with a bipolar ${\pm}750V$ low-voltage micro-grid. Simulator for this research is not only able to simulate photovoltaic generation according to weather informations and PV modules characteristics, but also contribute to stabilization of bipolar ${\pm}750V$ low-voltage of the system. Therefore, the simulator was designed to develop a system that can situationally respond to variable control algorithms such as the MPPT control, droop control, EMS power control, etc.

Analysis on Voltage Sag in Low Voltage DC Distribution System according to the Number of Poles (극 수에 따른 저압직류 배전계통의 순시전압강하 분석)

  • Noh, Chul-Ho;Kim, Doo-Ung;Gwon, Gi-Hyeon;Oh, Yun-Sik;Han, Jun;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.66-73
    • /
    • 2015
  • AC-based power systems, having the advantages that voltage transformation and long distance transmission are easy, have been constructed since the last 19th century. However, DC-based power system is paid attention these days because of the development of power electronic devices as well as the increase of digital loads and distributed generation. For instance, the transmission systems using High Voltage DC (HVDC) are commercially operated in the world and the researches on distribution system using Low Voltage DC (LVDC) are gradually increased. This paper analyzes voltage sag, resulted from faults, in LVDC distribution system according to the number of poles. Modeling and simulation with various conditions are conducted by using ElectroMagnetic Transients Program (EMTP). Moreover, some countermeasures to reduce voltage sag in LVDC distribution system are suggested briefly.

A Study on 75kW Bidirectional Converter for LVDC Distribution (LVDC 배전을 위한 75kW급 양방향 컨버터 연구)

  • Lee, Jung-Yong;Kim, Ho-Sung;Cho, Jin-Tae;Kim, Ju-Yong;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.432-433
    • /
    • 2018
  • A new DC-DC converter circuit for LVDC(Low Voltage Direct-Current) distribution is proposed. DC-DC converter consists of two stage which are voltage balancer and converter stage. The balancing circuit adjust balance input voltage of converter circuit and compensate for unbalanced loads and short circuits. The converter circuit control the bipolar output voltage ${\pm}750V$. Simulation is carried out for this DC-DC converter system.

  • PDF

A Study on Bipolar DC-DC Converter for Low Voltage Direct Current Distribution (저압 직류 배전용 양극성 DC-DC 컨버터에 관한 연구)

  • Lee, Jung-Yong;Kim, Ho-Sung;Cho, Jin-Tae;Kim, Ju-Yong;Cho, Younghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.229-236
    • /
    • 2019
  • This study proposes a DC-DC converter topology of solid-state transformer for low-voltage DC distribution. The proposed topology consists of a voltage balancer and bipolar DC-DC converter. The voltage and current equations are obtained on the basis of switching states to design the controller. The open-loop gain of the controller is achieved using the derived voltage and current equations. The controller gain is selected through the frequency analysis of the loop gain. The inductance and capacitance are calculated considering the voltage and current ripples. The prototype is fabricated in accordance with the designed system parameters. The proposed topology and designed controller are verified through simulation and experiment.

Isolated Bi-directional DC-DC Converter Containing Voltage Balancer for LVDC Distribution System. (저압 직류 배전 시스템을 위한 전압 밸런서가 내장된 절연형 양방향 DC-DC 컨버터)

  • Shin, Ki-Woong;Lee, Hee-Jun;Hyun, Seung-Wook;Hong, Seok-Jin;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.421-422
    • /
    • 2014
  • 본 논문에서는 저압 직류 배전 시스템의 구성방법 중 하나인 Bipolar System을 사용할 때 서로 다른 부하용량으로 인하여 발생하는 전압 불균형 문제를 보상하는 전압밸런서와 절연형 양방향 DC-DC 컨버터가 결합된 토폴로지를 제안하였다. 제안하는 DC-DC 컨버터의 1차측은 풀 브릿지 타입, 2차측 하프 브릿지 타입의 밸런싱 회로로 구성하여 따로 밸런서 없이 DC 그리드와 태양광 발전 시스템, ESS 시스템의 연계 및 전압밸런싱이 가능하다. 이와 같은 DC-DC 컨버터를 신재생 에너지와 연계하여 저압 직류 배전 시스템의 분산 전원으로 구성하였고, 시뮬레이션을 통하여 타당성을 검증하였다.

  • PDF

Isolated Three-Level Voltage Balancer for Bipolar LVDC Distribution System (양극성 저압 직류 배전 시스템을 위한 절연형 3레벨 전압 평형기)

  • Lee, Jun-young;Choi, Hyun-jun;Sim, Ju-young;Jung, Jee-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.87-89
    • /
    • 2018
  • 본 논문에서는 양극성 직류 배전 시스템에 사용할 수 있는 절연형 3-레벨 전압 평형기를 제안한다. 전압 평형기는 양극성 부하에서 발생하는 불균등한 전압을 보상해주는 필수적인 전력변환장치이다. 제안하는 1단 구성의 절연형 전압 평형기는 오직 3-레벨 Dual Active Bridge DC-DC 컨버터로만 구성되고, 기존에 전압 벨런싱을 위해 사용되던 추가적인 비절연형 전압 평형기를 필요로 하지 않는다. 따라서 기존 비절연형 전압 평형기에 사용되는 수동 및 능동 소자를 제거함으로써 전력변환 장치의 전체적인 전력 밀도 및 전력 변환 효율을 향상시키는 장점을 가진다. 새롭게 제안하는 스위칭 방식을 통해 3-레벨 전압 평형기가 절연과 전압 벨런싱 기능을 동시에 수행한다. 3 kW급 전압 평형기의 시작품을 이용하여 제안하는 토폴로지와 제어 알고리즘의 성능과 타당성을 실험적으로 검증하였다.

  • PDF